

SECURITY CLASSIFICATION OF THIS PAGE (When Dot. Entred)

REPORT DOCUMENTATION PAGE RE.AOR INSTRUCTIONS}B-FORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtifle) S. TYPE OF REPORT & PERIOD COVERED

Final Technical Report for Contract Period Technical
August 1, 1973 through July 31, 1977 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s)

Edward A. Feigenbaum
Joshua Lederberg DAHCt3-C-0435
Bruce Buchanan
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Stanford University AREA a WORK UNIT NUMBERS

Stanford, California
94305

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Projects Agency October 1977
Information Processing Techniques Of;589 13 NUMBER F PAGES

14Oo Wilson Avenue. Arlinqtnn, VA 2 65
14. MONITORING AGENCY NAME & ADDRESS(fI different from Controlling Office) 15. SECURITY CLASS. (of Chis report)

Mr. Philip Surra, Resident Representative UNCLASSIFIED
Office of Naval Research
Durand 165, Stanford University 15.HDECLASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Reproduction in whole or in part is permitted for any purpose of the U.S.
Gove rnmen t

APPROVED FOR PUELIC RELEASE

D S I T N T E ND IS R T , U :LIM ITED

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20O, If different from Report)

DTIC
18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on everse &id. II neceeeary and identify by block number)

artificial intelligence, knowledge-based systems, production systems,
knowledge representation, knowledge acquisition, knowledge utilization, learning
systems, meta-level knowledge

. ABSTRACT (Continue on reverse &#de It necessary and Identify by block number)

he research activities of the Heuristic Programming Project, for the four-year
eriod ending July 31, 1977, are summarized in this report. Contributions to
nowledge Engineering research in the fields of knowledge acquisition (both
interactive and sutomated), knowledge representation and knowledge utilization
€ere reported in over thirty publications by members of the project. A summary of -

hose publications is presented here.

h Handhnnk, an onrue-lpdic reference to thp fir
FORM 1413 EDITION OF I NOV 65 IS OBSOLETEDD JAN 73 17

SIN 0102-LF 014-6601
SECURITY CLASSIFICATION OF THIS PAGE ("en Date ffntred

- LI

. .. .

SECURITY CL ASSIFICATION OF TH15 PAGEr7van Dole. Ente.red)

is described in the appendix, along with the expected table of contents and

sample articles.

SEUIYCASIIAINO TI AE"n eoEtrd

76. "-"

DIMCI5-73-C-0435 Final Report

HEURISTIC POGRAK MING PROJECT

Computer Science Department

Stanford University

Final Technical Report for Contract Period

August 1, 1973 through July 31, 1977

Principal Investigators: 7A;eSo

Edward A. Feigenbaum NTIS CRAAI-
Joshua Lederberg 0.48
Bruce Buchanan

l but I on/-

4 Avallabl-t-. ,... ..Lz? Codes

This research was supported by the
Defense Advanced Research Projects Agency
under ARPA Order No. 2494
Contract No. DAHCI-73-C-0435

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies, either express or implied, of the Defense Advanced

Research Projects Agency or the United States Government.

October, 1977

9 ..

DABIC5-73-C-0435 Final Report i

Table of Contents

Section Page

Subsection

1. Introduction 2

1.1 Organization of this report 2

1.2 HPP research highlights, 1973 - 1977 2

2. Outline of HPP Research Goals and Relevant Work 5

2.1 Overview of AI Research 5

2.2 Knowledge Acquisition. 8

2.3 Knowledge Representation: Models for Theory
Formation 9

2.4 Knowledge Utiliz ation 9

3. A Summary of P research reports, 1973 through 1977 . . . 11

3.1 Results of Investigations with the MYCIN and

TEIRESIAS programs i

3.2 Research in Theory Formation 21

3.3 Studies of Production Rule Systems 25

3.4 Signal Understanding Systems 28

3.5 Discovery as Heuristic Search 29

3.6 Planning in an Experimental Science 31

3.7 Knowledge-based Programmer 's Assistant 33

3.8 Distributed Computing. 35

DAHCl5-73-C-3435 Final lReport ii

3.9 General discussions and surveys of HPP research
activities 39

4. Bibliography 44

5. Appendix The AI Handbook 48

5.1 Introduction 48

5.2 Table of Contents 48

5.3 SamleArticles 55

40

W1

DHC15-73-C-0435 Final Report 1

A3STMACT

The research activities of the Heuristic Programming Project,
for the four-year period ending July 31, 1977, are summarized in this
report. Contributions to Knowledge Engineering research in the fields
of knowledge acquisition (both interactive and automated), knowledge
representation and knowledge utilization were reported in over thirty
publications by members of the project. A summary of those
publications is presented here.

The AI Handbook, an encyclopedic reference to the field of
Artificial Intelligence, is described in the appendix, along with the
expected table of contents and sample articles.

KEY WORDS:

Artificial intelligence, knowledge-based systems, production
systems, knowledge representation, knowledge acquisition, knowledge
utilization, learning systems, meta-level knowledge.

* . . - - .. . i - . . . - , _ ; -, , . . . , _. _

AHCl5-73-C-0435 Final Report

1 Introduction

1.1 Organization of this report

Our completed research results have been reported in many
publications which have appeared in technical journals, conference
proceedings and internal Heuristic Programming Project (HPP) reports
(inclxding Ph.D. theses). Many of these publications report on
research which spans the categories of acquisition, representation and
utilization of knowledge which comprise our knowledge engineering
activities. Consequently organizing a summary of our research along
these dimensions would result in considerable redundancy. Moreover,
some of our research led into new, yet relevant, areas which were not
foreseen when we laid out our specific objectives in the 1973 and 1975
proposals.

An alternative organization is one which is built around the
HPP research reports themselves. This organization offers the reader a
glimpse of what is in those reports, and informs him where specific
details may be found. We have chosen this publication-based approach
here; however, we also present, in Sect. 2, a summary of results,
organized according to the goals set forth in our 1975 proposal, with
pointers to the HPP reports which are sumarized in Sect. 3.

A bibliography of HPP reports is given in Sect. 4. The
appendix contains a progress report on the AI Handbook, an encyclopedic
reference to the subject matter of Artificial Intelligence research.
The expected table of contents is given, along with a few sample
articles.

1.2 HPP research highlights, 1973 - 1977

Here, in brief, are the major accomplishments of the Heuristic
Programming Project during the past four years. Although each of the
items in the following list is discussed in more detail in section 3,
pointers to the HPP bibliography are given here also. Although the
references cited here are all dated from 1975 to 1977, the research
itself extends over the full four-year period.

1. An interactive knowledge acquisition program, called
TEIRESIAS, which accepts, analyzes and critiques new
rules to be incorporated in the MYCIN system, was
completed (Davis, 76-7).

2. The concept of meta-rules was developed and implemented

DAHCI5-73-C-0435 Final Report 3

in the 14YCIN and TEIRESIAS systems (Davis, 77-6), and
generalized to other knowledge-based systems using
production rules (Davis, 77-16; Nii, 77-7).

3. The TEIRESIAS program demonstrated, inter alia, the power
of using a program's knowledge of its own
representations to acquire additional knowledge (Davis,
77-8).

4. The Meta-DENDRAL program for automatic formation of new
theoretical rules in mass spectrometry was successfully
applied to a real problem in chemistry (Buchanan, 76-4).

5. The techniques for automatic rule formation developed in
the Meta-DENDRAL program were extended to a new task
domain (Mitchell, 77-4). This extension also involved a
generalization of the set of descriptive terms in which
the rules can be expressed.

6. Generalized techniques for automatically acquiring new
knowledge in the form of production rules were developed
(Buchanan, 77-6; Mitchell, 77-13; Smith, 77-14).

7. Studies were made and reported of the processes and
representations which facilitate the multiple uses of
knowledge in the context of signal understanding (Nii,
77-7).

8. Design alternatives for systems which integrate multiple
sources of knowledge were investigated and reported for
an application in the domain of protein structure
inference (Feigenbaum, 77-15; EngeLmore, 77-2).

9. In order to provide a program with the capability of
explaining its own reasoning steps, the history-list
schema was developed and implemented within the MYCIN
system (Shortliffe, 75-2; Davis, 76-7; Clancey, 77-1).

10. A comprehensive survey of the many activities which
comprise the field of Artificial Intelligence was
initiated and nearly completed during this period.
Examples of some of the articles written for this "A.I.
Handbook" are given in the appendices.

i1. The scope and limitations of building knowledge-based
expert systems like MYCIN were studied (Shortliffe, 75-
16). The scope of such systems has been demonstrated in
a practical sense through its recent application in
several new task domains (Feigenbaum, 77-25).

,* '° .° . . .- • ,

DAHCI5-73-C-0435 Final Report 4

12. A model for incorporating inexact reasoning within
knowledge-based systems was developed and used in the
MYCIN system (Shortliffe, 75-1).

13. Production system techniques were carefully studied, and
a comprehensive survey of the current state of the art
in this area was documented (Davis, 75-6, 75-7).

14. A study was made of computer networking as a means of
technology transfer (Carhart, 75-14).

15. An investigation of the use of AI techniques to aid in
the process of scientific discovery led to a novel
system for discovering mathematical relations (Lenat,
76-8).

16. A new concept, called the contract net, was proposed for
the design of a highly parallel and highly asynchronous
multiprocessor computer organization for AI problem
solving (Smith, 77-12; Wiederhold, 77-21).

17. A study was made of distributed data bases (Garcia-

Molina, 77-27).

18. A study was made of the use of production systems for
automatic deduction (Nilsson, 77-28).

19. A study was made of systems for automatic debugging of
user programs, and a prototype system was implemented
for debugging simple LISP programs. (Brown, Ph.D.
dissertation)

20. Several papers were presented at conferences to transfer
the paradigms of knowledge-based expert systems to the
AI and scientific comunities (Feigenbaum, 74-4, 77-15,
77-25; Buchanan, 75-13; Martin, 77-5).

DAHCl5-73-C-0435 Final Recort 5

2 Outline of HPP Research Goals and Relevant Work

2.1 Overview of AI Research

At a 1974 conference of the Federation of Experimental
Societies for Experimental Biology, Feigenbaum chaired a session on 716
computer applications. He introduced the session with a definition of
Artificial Intelligence, an overview of AI research, examples of high
performance programs and a discussion of knowledge-based systems.
Because this succinct survey is not easily accessible to tbl 7omputer
science community, it is reproduced here nearly in its entire

0 ,
Artificial Intelligence research is that part o -:umputer

science that is concerned with the symbol-manipulation proc es that
produce intelligent action. By "intelligent action" is meant ct or
decision that is goal-oriented, arrived at by an understand - chain
of symbolic analysis and reasoning steps, in which knowledge of the
work informs and guides the reasoning.

The potential uses of computers by people to accomplish tasks
can be "one-dimensionalized" into a spectrum representing the nature of
instruction that must be given the computer to do its job. Call it the
"WHAT-TO-HOW" spectrum. At one extreme of the spectrum, the user
supplies the intelligence to instruct the machine with precision
exactly HOW to do his job step-by-step. Progress in computer science
can be seen as steps away from the extreme HOW point on the spectrum:
the familiar panoply of assembly languages, subroutine libraries,
compilers, extensible languages, etc. At the other extreme of the
spectrum is the user with his real problem (WHAT he wishes the
computer, as his instrument, to do for him). He aspires to communicate
WHAT he wants done in a language that is comfortable to him (perhaps
English); via communication nodes that are convenient for him
(including, perhaps, speech or pictures); with some generality, sone
abstractness, perhaps some vagueness, imprecision, even error; without
having to lay out in detail all necessary subgoals for adequate AN
performance with reasonable assurance that he is addressing an
intelligent agent that is using knowledge of his world to understand
his intent, to fill in his vagueness, to make specific his
abstractions, to correct his errors, to discover appropriate subgoals,
and ultimately to translate WHAT he really wants done into processing
steps that define HCW it shall be done by a real computer. The
research activity aimed at creating computer programs that act as
"intelligent agents" near the WHAT end of the WHAT-TO-HOW spectrum can
be viewed as the long-range goal of AI research. Historically, Al
research has always been the primary vehicle for progress toward this
end, even though science as a whole is largely unaware of the role, the
goals, and the progress made.

DAHCI5-73-C-0435 Final Report 6

The root concepts of AI as a science are 1) the conception of
the digital computer as a symbol-processing device (rather than 3s
merely a number calculator); and 2) the conception that all intelligent
activity can be precisely described as symbol manipulation. (The
latter is the fundamental working hypothesis of the AI field, but is
controversial outside of the field.) The first inference to be made
therefrom is that the symbol manipulations which constitute intelligent
activity can be modeled in the medium of the symbol-processing
capabilities of the digital computer.

This intellectual advance---which gives realization in aphysical system, the digital computer, to the complex symbolic

processes of intelligent action and decision, with detailed case
studies of how the realization can be accomplished, and with bodies of
methods and techniques for creating new demonstrations-ranks as one of
the great intellectual achievements of science, allowing us finally to
understand how a physical system can also embody mind. The fact that
large segments of the intellectual community do not yet understand that
this advance has been made does not change its truth or its fundamental
nature.

2.1.1 HIGH PERFOR4ANCE PROGRAMS THAT PERFOR4 AT NEAR-HUMAN LEVEL IN
SPECIALIZED AREAS

As the Al research matured to the point where the practitioners
felt comfortable with their tools, and adventuresome in thLir use; as
the need to explore the varieties of problems posed by the real world
was more keenly felt, and as the concern with knowledge-driven programs
(see below) intensified, specific projects arose which aimed at and
achieved levels of problem solving performance that equaled, and in
some cases exceeded, the best human performance in the tasks being
studied. An example of such a program is the heuristic DENDRNL
program, developed by our interdisciplinary group at Stanford
University. It solves the scientific induction problem of analyzing
the mass spectrum of an organic molecule to produce a hypothesis about
the molecule's total structure. This is a serious and difficult
problem in a relatively new area ot analytical chemistry. The
program's performance has been generally very competent and in "world's
champion" class for certain specialized families of molecules. Similar
levels of successful performance have been achieved by some of the
MATHLAB programs at MIT that assist scientists in doing symbolic
integration in calculus, and are virtually unexcelled. In medical
problem solving tasks, other applications are beginning to be
developed. One of these is the MYCIN program (being developed at the
Stanford University Medical School) for advising physicians about
antibiotic therapy for treating infectious diseases.

9 4

SDAC15-73-C-0435 Final Report 7

2.1.2 KNaLE E-BASED SYSTEMS

This term is intended to connote, in familiar terms, something
like: "What is the meaning of..." or "How is that to be understood..."
or "What knowledge about the world must be brought to bear to solve the
particular problem that has just come up?" The research deals with the
problem of extracting the meaning of: utterances in English; spoken
versions of these; visual scenes; and other real-world symbolic and
signal data. It aims toward the computer understanding of these as
evidenced by the computer's subsequent linguistic, decision-making,
question-answering, or motor behavior.

Thus for example, we will know that our "intelligent agent"
understood the meaning of the English command we spoke to it if: a) the
command was in itself ambiguous; b) but was not ambiguous in context;
and c) the agent performed under the appropriate interpretation and
ignored the interpretation that was irrelevant in context.

One paradigm for work in this area of knowledge-based systems
is, very generally sketched, as follows:

a) a situation is to be described or understood; a signal input
is to be interpreted; or a decision in a problem-solution path is to be
made. Examples: A speech signal is received and the question is, "What
was said?" The TV camera system sends a quarter-million bits to the
computer and the question is, "What is out there on that table and in
what configuration?" The molecule structure-generator must choose a
chemical functional group for the "active center" of the molecular
structure it is trying to hypothesize and the question is, "What does
the mass spectrum indicate is the 'best guess'?"

b) Specialized collections of facts about the various
particular task domains, suitably represented in the computer memory
(call these Experts) can recognize situations, analyze situations, and
make decisions or take actions within the domain of their specialized
knowledge. Examples: In the Carnegie-.lellon University Hear-say speech
understanding system, currently the Experts that contribute to the
current best hypothesis are an acoustic-phonetic Expert, a grammar
Expert, and a chess Expert (since chess playing is the semantic domain
of discourse). In heuristic DENDRAL, the Experts are those that know
about stability of organic molecules in general, mass spectrometer
fragmentation processes in particular, nuclear magnetic resonance
phenomena, and so on.

For each of the sources of knowledge that can be delineated,
schemes must be created for bringing that knowledge to bear at some
place in the ongoing analysis or understanding process. The view is
held that programs should take advantage of a wide range of knowledge,
creating islands of certainty as targets of opportunity arise, and

DAHC5-73-C-0435 Final Report 8

using these as anchors for curther uncertainty reduction. It is an
expectation that always sote different aspect provides the toehold for
making headway-that is, that unless a rather large amount of knowledge
is available and ready for application, this paradigmatic scheme will
not work at all.

To summarize: In AI research, there are foci upon the encoding
of knowledge about the world in symbolic expressions so that this
knowledge can be manipulated by programs; and the retrieval of these
symbolic expressions, as appropriate, in response to demands of various
tasks. AI has sometimes been called "applied epistemology" or
"knowledge engineering."

The AI field has come increasingly to view as its main line of
endeavor: knowledge representation and use, and an exploration of
understanding (how symbols inside a computer, which are in themselves
essentially abstract and contentless, come to acquire a meaning).

The impact of the "knowledge engineering" research and
development endeavors of the AI scientists can and ultimately will have
a major impact on the organization of specialized knowledge in all the
domains it touches; on intelligent computer assistance to
practitioners; and on the transmission of this knowledge to new
students of the domain.

2.2 Kn(wledge Acquisition

2.2.1 Interactive Knowledge Acquisition

Relevant research results:

Development and implementation of the TEIRESIAS program

Relevant publications: 76-7,77-8,77-9

2.2.2 Automatic Knowledge Acquisition: Transfer of Research Results
to the Scientific Comunity

Relevant research results:

New contributions to mass spectrometry and 13C MAR spectroscopy
by NLta-DENDRAL program and its generalization;

Development of the version space concept and, from it, a more
general approach to automated learning techniques.

DAMCI5-73-C-0435 Final Report 9

Relevant publications: 74-3,76-4,77-4,77-6,77-13,77-14

2.3 Knowledge Representation: Models for Theory Formation

Relevant research results:

Extension of Meta-DENDRAL to new application doiain, using
different descriptive terms;

Development and Implementation of meta-level knowledge in
TEIRESIAS;

Study of scope and limitations of production rule systems.

Relevant publications: 75-6,75-7,76-7,77-7,77-8,77-16

2.4 Knowledge Utilization

2.4.1 Multiple Uses of the Same Knowledge Base

Relevant research results:

Development of an "intelligent teacher" for the MYIN systen
(work still in progress);

Development and implementation of schema rules and an
explanation subsystem to permit a program's knowledge of its own
representations to be exploited for explanation and acquisition of new
knowledge;

Development of the SU/X and SU/P programs which generalize the
meta-rule concept to other knowledge-based systems.

Relevant publications: 76-7,77-2,77-7,77-8

2.4.2 Program Strategy and Control

Relevant research results:

MYCIN was extended to use meta-rules;

Meta-rules were added and tested in AYCIN;

. _ . . = ; : • • _ A N

DAHC15-73-C-0435 Final Report 10

eta-rules were used in the construction of the TEIRESIAS
progr&m and the concept was generalized to both goal-driven and event- 5
driven production rule systems.

The contract net concept was developed to control problem
solving in a network of asynchronous parallel processors.

Relevant publications: 76-7,77-7,77-12,77-16

2.4.3 Integration of Multiple Sources of Knowledge

Relevant research results:

Design alternatives were investigated for using multiple KSs in
the protein structure inference system (CRYSALIS);

Implementations of two systems for protein structure inference,
one primarily model-driven and the other primarily data-driven, are
currently in progress;

Integration of KSs and data bases distributed among many
computing systes was investigated, leading to the development of the
contract net.

Relevant publications: 76-8,77-2,77-12,77-15,77-27

2.4.4 Explanation

Relevant research results:

The scope of the MYCIN-like explanation scheme was studied;

A general history-list schema was developed and incorporated in
TEIRESIAS, including procedures for adding items to the history-list,
accessing relevant items, and describing the role of any item in the
program's line of reasoning.

Relevant publications: 75-2,76-7,77-1

DACI5-73-C-0435 Final Report 11

* 3 A Summary of HPP research reports, 1973 through 1977

In this section we present summaries of the Heuristic
Programming Project activities, as reported in our publications. The
report summaries are grouped according to the sub-projects which
comprise the total effort, and chronologically within each sub-project

* category.

3.1 Results of Investigations with the 'MYCIN and TEIRESIAS programs

3.1.1 HPP-75-1
Title: A Model of Inexact Reasoning in Medicine

Authors: E. H. Shortliffe and 3. G. Buchanan

This report presents an approach to reasoning under
uncertainty. The algorithms developed for this purpose were
incorporated in the MYCIN program. Although the context of the
presentation is in the medical domain, the techniques apply to any task
domain in which judgmental knowledge is used.

Often a task domain suffers from having so few data and so much
imperfect knowledge that a rigorous probabilistic analysis, the ideal
standard by which to judge the rationality of a problem solver's
effort, is seldom possible. Practitioners nevertheless seem to have
developed an ill-defined mechanism for reaching decisions despite a
lack of formal knowledge regarding the interrelationships of all the
variables that they are considering. This report proposes a
quantification scheme which attempts to model the inexact reasoning
process of medical experts. The numerical conventions provide what is
essentially an approximation to conditional probability, but ofer
advantages over Bayesian analysis when they are utilized in a rule-
based computer diagnostic system. One such sstem, a clinical
consultation program named MYCIN, is described in the context of the
proposed model of inexact reasoning.

3.1.2 HPP-75-2

Title: Computer-Based Consultations in Clinical Therapeutics;
Explanation and Rule Acquis- ion Capabilities of the .!YCIN System

Authors: E. H. Shortliffe, R. Davis, S.G. Axline, B.G. Buchanan,
C.C. Green, S.N. Cohen

Techniques for giving a knowledge-based system the capability
of explaining its line of reasoning were first explored in the context

DAHC15-73-C-0435 Final Report 12

of the MYCIN system by Shortliffe, Davis, et al. The explanation
subsystem of MYCIN understands simple English questions and answers
them, in English, in order to justify its decisions or instruct the
user.

The interactive explanation capability of MYCIN circa 1974 was
first reported in this paper, published in Computers and Biomedical
Research. The techniques of retrieving the current subgoals in answer
to WHY questions, or of examining preconditions in the current rule in
answer to HCW questions are clearly of general applicability to
knowledge-based consultation systems.

3.1.3 HPP-76-7
Title: Applications of Meta Level Knowledge to the Construction,
Maintenance and Use of Large Knowledge Bases

Author: R. Davis

Significant progress was made in the methodology of interactive
knowledge acquisition by Randall Davis as part of his doctoral
dissertation. Davis designed and built a program, called TEIRESIAS,
which establishes an intelligent link between a human expert and a
computer consultant.

Knowledge Acquisition

Knowledge acquisition is described as a process of information
transfer from the expert to a performance program, in which TEIRESIAS's
task was to "listen" as attentively and intelligently as possible. The
process was set in the context of a shortcoming in the knowledge base
as an aid to both the expert and the system. The context provides the
expert with a useful organization and focus. He is not simply asked to
describe all he knows about a domain. He is instead faced with a
specific consultation whose results he finds incorrect, and has
available a set of tools that will allow him to uncover the system's
knowledge, and the rationale behind its performance. His task is then
to specify the particular difference between the system's knowledge and
his own that accounts for the discrepancy in results. The system
relies on the context of the error to form a set of expectations about
the character of the information that will be forthcoming. This leads
to better comprehension of the expert's statement of that information,
and provides a number of checks on its content that insure it will in
fact repair the problem discovered. In a single phrase, information
transfer in the context of a shortcoming in the knowledge base
characterizes our approach to the problem, and suggests the source of
many of the system's abilities.

1:quiring new rules

• "% '. . . . " i " .. " , •• ,

EAHC15-73-C-0435 Final Report 13

New rule acquisition is seen in terms of model-directed
understanding and a recognition-oriented approach to comprehension. :0
This means that the system has some model of the content of the signal
it is trying to interpret, and uses this to help constrain the set of
interpretations it will consider. In our case, the model took the form
of rule models, constructs which offer a picture of a "typical" rule of
a given type. They are assembled by the system itself, using a
primitive, statistically-oriented form of concept formation to produce
abstract descriptions of regularities in subsets of rules.

As noted, the context provided by the process of tracking down
the error in the knowledge base makes it possible for TEIRESIAS to form
expectations about the character of the new rule. These expectations
are expressed by selecting a specific rule model. The text of the new
rule is then allowed to suggest interpretations (the bottom-up, data
directed part of the process), but these are constrained and evaluated
for likely validity by reference to the rule model (the top down,
hypothesis-driven part). It is the intersection of these two
information sources, approaching the task from different directions,
that is responsible for much of the system's performance.

Further application of the model-directed formalism is seen in
the system's ability to "second guess" the expert. Since it has a
model of its own knowledge - the rule models - it can tell when
something "fits" in its knowledge base. It is the occurrence of a

* partial match between the new rule and the model chosen earlier that
prompts the system to make suggestions to the expert. This idea of an
incompletely met expectation is not specific to the current
organization or structure of the rule models, and can be generated to
cover any aspects of a representation about which expectations can be
formed.

Several implications were seen to follow from the fact that the
system itself constructs the rule models from current contents of the
knowledge base. Since the process is automated, the expert never has
to enter a model by hand; he may even be unaware of their existence.
%kbreover, unlike most other model-based systems, new models are
constructed on the basis of past experience, since rules learned
previously are used in forming new models. Since the models are
updated as each new rule enters the knowledge base, the model set is
kept current, evolving with the growing knowledge base, and reflecting
the shifting patterns it contains.

Other implications follow from the fact that these models give
the system an abstract picture of its own knowledge base. It means
that, in a rudimentary way, the system "knows what it knows, and knows
where it is ignorant." It can answer questions about the content of its
knowledge base by "reading" a rule model, giving a picture of global
structure of its knowledge about a topic. Since the models are ordered

DAE5-73-C-0435 Final Report 14

on the basis of an empirically defined "strength", the system can also
give some indications about likely gaps in its knowledge.

Finally, the coupling of model formation with the model-
directed understanding process offers a novel form of closed-loop
behavior. Existing rule models are used to guide the acquisition
process, the new rule is added to the knowledge base, and the relevant
rule models are recomputed. Performance of the acquisition routines
may thus conceivably be improved on the very next rule.

In summary then, the system constructs models of its own
knowledge on the basis of experience, keeps those models up to date
with the current knowledge base, and then uses them in the acquisition
of new knowledge later on.

Acquiring New Conceptual Primitives

The primary issue here is the representation and use of
knowledge about representations. The schemata and associated
structures offer a language for expression of the knowledge and a
framework for its organization. There are three levels to that
organization: (i) the fundamental unit of organization is the
individual schema, a record-like structure that provides the basis for
assembling a variety of information about a particular representation;
(ii) the schema network is a generalization hierarchy that indicates
the existing categories of data structures and relationships between
them; and (iii) the slotnames and slotexperts that make up a schema
deal with specific representation conventions at the programing
language level.

Unlike standard records, however, the schemata and all
associated structures are a part of the system itself, available for
examination and reference. They also have the ability to describe a
certain amount of variability in structure description.

The process of acquiring a new conceptual primitive strongly
resembles the creation of a new instance of a record, but has been
extended in several ways. It has been made interactive to allow the
expert to supply information about the domain, the dialog is couched in
high level terms to make comprehensible to a non-programmer, and the
whole process has been made as easy and "intelligent" as possible, to
ease the task of assembling large amounts of knowledge.

This process was applied to MYCIN by viewing each of the
representational primitives as an extended data type, and constructing
the appropriate schema for each of them. That is, the language for
describing representations was used to formalize a range of information
about MYCIN's current set of representations.

DHC15-73-C-0435 Final Report 15

The generality of this approach results from a stratification
and isolation of different varieties of knowledge at different levels:
instances of individual schemata form the collection of domair specific
knowledge; the schemata themselves define a base of representation
specific information; while the schema-schema supplies a small
foundation of representation independent knowledge. This
stratification makes it possible for the system to acquire both new
instances of existing representations (as in learning about a new
organism), and new types of representations (as in the acquisition of a
new schema), using a single formalism and body of code.

Finally, it was noted that the same motivation was responsible
for both the schemata and the recursive application of the idea to
produce the schema-schema. The schemata were designed to automate the
handling of the large number of details involved in the creation and
management of data structures. But they themselves were sufficiently
complex and detailed data structures that it was useful to have a
similar device for their construction and management. This resulted in
the creation of the schema-schema, and it, along with a small body of
associated structures, forms a body of representation independent
knowledge from which a knowledge base can be constructed.

3.1.4 HPP-77-1
Title: ExpInation Capabilities of Knowledge-3ased Production Systems

Authors: A. C. Scott, W. Clancey, R. Davis, and E. H. Shortliffe

This paper discusses the general characteristics of explanation
systems: what types of explanations they should be able to give, what
types of knowledge will be needed in order to give these explanations,
and how this knowledge might be organized. The explanation facility in
MYCIN is discussed as an illustration of how the various problems might
be approached.

The case is made here for exploring the production system
architecture to facilitate program-generated explanations. The process
of trying rules and taking actions can be thought of as "reasoning",
and explanations consist of showing how rules used information provided
by the user to make various intermediate deductions and finally to
arrive at the answer. If the information contained in these rules is
sufficient to show why an action was taken (without getting into
programming details), an explanation can consist of printing each rule
that was used (or an English equivalent of what the rule means.)

The development of an explanation mechanism for a consultation
system is very much related to the problems of representing knowledge
and of making use of different sources of knowledge. Since the
production system formalism provides a unified way to represent modular

DAHCI-73-C-0435 Final Report 16

pieces of knowledge, the task of designing an explanation capability is
simplified for production-based consultation systems. The example of
MYCIN shows how this can be done and illustrates further that a system
designed for a single domain with a small, technical vocabulary can
give comprehensive answers to a wide range of questions without
sophisticated natural-language processing.

3.1.5 HPP-77-8
Title: Knowledge Acquisition on Rule-based Systems: Knowledge about
Representations as a Basis for System Construction and Maintenance

Author: Randall Davis

One of the knowledge acquisition issues explored in Davis' work
on TEIRESIAS was how to acquire new conceptual primitives with which
new inference rules can be built. In a paper to appear in the book
Pattern-Directed Inference Systems [D. Waterman and R. Hayes-Roth
(eds.), Academic Press], Davis shows that by providing a program with a
store of knowledge about its own representations, this acquisition of
new concepts can be carried out in a high-level dialog that transfers
information efficiently. The necessary knowledge about representations
includes both structural and organizational information, and is
spacified in a data structure schema, a device used to describe
representations.

3.1.6 HPP-77-9
Title: Interactive Transfer of Expertise I: Acquisition of New
Inference Rules

Author: Randall Davis

Those aspects of Davis' thesis specifically related to
knowledge acquisition were extracted and presented in this paper
delivered at the 5th IJCAI. He shows an example of TEIRESIAS in
operation, and explains how the program guides the acquisition of new
inference rules. The concept of meta-level knowledge is described, and
an illustration is given of its utility and contribution to the
creation of intelligent programs. The following is an overview of the
main ideas:

1. Knowledge acquisition in context

Performance programs of the sort TEIRESIAS helps create will
typically find their greatest utility in domains where there are no
unifying laws on which to base algorithmic methods. In such domains an
expert specifying a new rule may be codifying a piece of knowledge that
has never previously been isolated and expressed as such. Since this

- - - -

DAHI15-73-C-0435 Final Report 17

is difficult, anything which can be done to ease the task will prove
very useful.

In response, we have emphasized knowledge acquisition in the
context of a shortcoming in the knowledge base. To illustrate its
utility, consider the difference between asking the expert

What should I know about the stock market?

and saying to him

Here is an example in which you claim the performance program
made a mistake. Here is all the knowledge the program used, here are
all the facts of the case, and here is how it reached its conclusions.
Now, what is it that you know and the system doesn't that allows you to
avoid making that sare mistake?

Note how much more focussed the second question is, and how
much easier it is to answer.

2. Building expectations

The focussing provided by the context is also an important aid
to TEIRESIAS. In particular, it permits the system to build up a set
of expectations concerning the knowledge to be acquired, facilitating
knowled e transfer and making possible several useful features
illustrated in the trace and described below.

3. Model-based understanding

Model-based understanding suggests that some aspects of
understanding can be viewed as a process of matching: the entity to be
understood is matched against a collection of prototypes, or models,
and the most appropriate model selected. This sets the framework in
which further interpretation takes place, as that model can then be
used as a guide to further processing.

While this view is not new, TEIRESIAS employs a novel
application of it, since the system has a model of the knowledge it is
likely to be acquiring from the expert.

4. Giving programs a model of their own knowledge

The combination of TEIRESIAS and the performance program
amounts to a system which has a picture of its own knowledge. That is,
it not only knows something about a particular domain, but in a
primitive sense it knows what it knows, and employs that model of its
knowledge in several ways.

5. Learning by experience

'S -'4

DAHCIS-73-C-0435 Final Report 18

One of the long-recognized potential weaknesses of any model-
based system is dependence on a fixed set of models, since the scope of
the program's ",understanding" of the world is constrained by the number
and type of models it has. The models TEIRESIA.S employs are not hand-
crafted and static, but are instead formed and continually revised as a
by-product of its experience in interacting with the expert.

ell
3.1.7 HPP-77-16
Title: Meta-Level Knowledge: Overview and Applications

Authors: Randall Davis and Bruce G. Buchanan

This paper explores a number of issues involving representation
and use of what we term meta-level knowledge, or knowledge about
knowledge. In the most general terms, meta-level knowledge is
knowledge about knowledge. Its primary use here is to enable a program
to "know what it knows", and to make multiple uses of its knowledge.
That is, the program is not only able to use its knowledge directly,
but may also be able to examine it, abstract it, reason about it, or
direct its application. To see in general terms how this can be
accomplished, imagine taking some of the available representation
techniques and turning them in on themselves, using them to describe
their own encoding and use of knowledge. In very general terms this is
what we have done, with both existing representations and a number of
newly developed ones.

Four specific types of meta-level knowledge are described,
followed by examples of each:

IN .1DGE ABOUT IS E-ODED IN

I inference rules rule models
representation of objects schemata
representation of functions function templates

I reasoning strategies meta-rules

The examples reviewed illustrate a number of general ideas
about knowledge representation and use which have become evident as a
result of experience in building large, high performance programs.

We have, first, the notion that knowledge in programs should be
made explicit and accessible. Use of production rules to encode the
object level knowledge is one example of this, since knowledge in thm
is more accessible than that embedded in the code of a procedure. The
schemata, templates, and meta-rules illustrate he point also, since
each of them encodes a form of information that is, typically, either

DAHCI5-73-C-0435 Final Report 19

omitted entirely or at best is left implicit. By making knowledge
explicit and accessible, we make possible a number of useful abilities.
The schemata and templates, for example, support system maintenance and
knowledge acquisition. Meta-rules offer a means for explicit
representation of the decision criteria used by the system to select
its course of action Subsequent "playback" of those criteria can then
provide a form of explanation of thie motivation for system behavior.
That behavior is also more easily modified, since the information on
which it is based is both clear (since it is explicit) and retrievable
(since it is accessible). Finally, more of the system's knowledge and
behavior becomes open to examination, especially by the system itself.

Second, there is the idea that programs should have access to
and an "understanding" of their own representations. To put this
another way, consider that over the years numerous representation
schemes have been proposed and have generated a number of discussions
of their respective strengths and weaknesses. Yet in all these
discussions, one entity intimately concerned with the outcome has beenleft uninformed: the program itself. -what this suggests is that we

ought to describe to the program a range of information about the
representations it employs, including such things as their structure,
organization, and use.

But suppose we could describe to a system its representations?
What benefits would follow? The primary thing this can provide is a
way of effecting multiple uses of the same knowledge. Consider for
instance the multitude of ways in which the object level rules have
been used. They are executed as code in order to drive the
consultation; they are viewed as data structures, and dissected and
abstracted to form the rule models; they are dissected and examined in

0 order to produce explanations; they are constructed during knowledge
acquisition; and finally they are reasoned about by the meta-rules.

It is important to note here that the feasibility of such
multiplicity of uses is based less on the notion of production rules
per se, than on the availability of a representation with a small grain
size and a simple syntax and semantics. "Small", modular chunks of
code written in a simple, heavily stylized form (though not necessarily
a situation-action form), would have done as well, as would any
representation with simple enough internal structure and of manageable
size. The introduction of greater complexity in the representation, or
the use of a representation that encoded significantly larger "chunks"
of knowledge would require more sophisticated techniques for dissecting
and manipulating representations than we have developed thus far. But
the key limitations are size and complexity of structure, rather than a
specific style of knowledge encoding.

Two other benefits may arise from the ability to describe
representations. We noted earlier that much of the information

DAHC15-73-C-0435 Final Report 20

necessary to maintain a system is often recorded in informal ways, if

at all. If it were in fact convenient to record this information by
describing it to the program itself, then we would have an effective
and useful repository of information. We might see information that
was previously folklore or informal documentation becoming more
formalized, and migrating into the system itself. We have illustrated
above a few of the advantages this offers in terms of maintaining a
large system. C.

This may in turn produce a new perspective on programs. The
initial scarcity of hardware resources instilled in programmers a
certain mania for minimizing machine resources consumed, as evidenced,
for example, by the belief that numeric expressions should be evaluated
by the programmer and his desk calculator, rather than "waste" the
computer's time. More recently, this has meant a certain style of
programming in which a programmer spends a great deal of time thinking
about a problem first, trying to solve as much as possible by hand, and
then abstracting out only the very end product of all of that to be
embodied in the program. That is, the program becomes simply a way of
manipulating symbols to provide "the answer", with little indication
left of what the original problem was, or more important, -what
knowledge was required to solve it.

But what if we reversed this trend, and instead view a program
as a place to store many forms of knowledge about the problem and the
proposed solution (i.e., the program itself). 'This would apply equally
well to code and data structures, and could help make possible a wider
range of useful capabilities of the sort illustrated above.

One final observation. As we noted at the outset, interest in
knowledge-based systems was motivated by the belief that no single,
domain independent paradigm could produce the desired level of
performance. It was suggested instead that a large store of domain
specific (object level) knowledge was required. We might similarly
suggest that this too will eventually reach its limits, and that simply
adding more object level knowledge will no longer, by itself, guarantee
increased performance. Instead it may be necessary to focus on
building stores of meta-level knowledge, especially in the form of
strategies for effective use of knowledge. Such "meta-level knowledge
based" systems may represent a profitable direction for the development
of high performance programs.

3.1.8 HPP-77-33

Title: Generalized Procedure Calling and Content-Directed Invocation

Author: Randall Davis

In this paper, Davis continues his exploration of meta-level

DAHC5-73-C-0435 Final Report 21

knowledge, specifically the use of meta-rules to encode problem solving
strategies. Meta-rules contain knowledge about how to select from
among a set of plausibly useful knowledge sources. Experience with
their use in the TEIRESIAS program has demonstrated their utility as a
flexible programming mechanism for controlling the invocation of
object-level knowledge. The advantages of addressing object-level
rules by their content rather than by their labels is also discussed.

3.2 Research in Theory Formation

3.2.1 HPP-76-4
Title: Applications of Artificial Intelligence for Chemical Inference
XXII. Automatic Rule Formation in Mass Spectrometry by Means of the
Meta-DENDRAL Program

Authors: B. G. Buchanan, D. H. Smith, W. C. White, R. J. Gritter,
E. A. Feigenbaum, J. Lederberg and Carl Djerassi

This paper was the first official communication of the theory
formation program, Meta-DENDRAL, to the comnunity of analytical
chemists. The importance of this work is summarized in the conclusion:

We have shown that the Meta-DENDRAL program is capable of
rationalizing the mass spectral fragmentations of sets of molecules in
terms of substructural features of the molecules. On known test cases,
aliphatic amines and estrogenic steroids, the Meta-DENDRAL program
rediscovered the well-characterized fragmentation processes reported in
the literature. On the three classes of ketoandrostanes for which no
general class rules have been reported, the mono-, di-, and
triketoandrostanes, the program found general rules describing the mass
spectrometric behavior of those classes. The general rules shown in
Tables II, IV, and VI explain many of the significant ions for
compounds in these classes while predicting few spurious ions. The
program has discovered consistent fragmentation behavior in sets of
molecules -which have not appeared by manual examination to behave
homogeneously in the mass spectrometer.

Programs with knowledge of the scientific domain can provide

"smart" assistance to working scientists, as shown by the reasoned

suggestions this program makes about extensions to mass spectrometry
theory. We are aware that the program is not discovering a new
framework for mass spectrometry theory; to the contrary, it comes close
to capturing in a computer program all we could discern by observing
human problem-solving behavior. It is intended to relieve chemists of
the need to exercise their personal heuristics over and over again, and
thus we believe it can aid chemists in suggesting more novel extensions

.

DAHCI5-73-C-0435 Final Report 22

to existing theory. It can be argued that the two-dimensional
connectivity model of molecules used in this study is not the right
model for mass spectrometry; that there are deeper rationalizations of
a fragmentation process than subgraph environments. However, this
model is commonly used by working chemists and once fragmentations
based on this model are defined, chemists can readily provide the
remaining "mechanistic" rationalizations or see that further
experimental work with labeled compounds is necessary.

Recent statistical pattern recognition work addresses some of
the points on rule formation and spectrum prediction raised in this
paper. We have avoided blind statistical methods for three important
reasons. 1) We wish to explore thousands of possible subgraphs with
associated features, as we search for those which are in some way
important. Current pattern recognition procedures are restricted to
much smaller numbers of manually (or computer-assisted) selected
features, adding additional bias to the procedure. 2) We want to know
how certain rules were obtained by the program and why certain other
rules were rejected or not detected. We can trace the reasoning steos
of the Meta-DENDRAL program and determine chemically meaningful answers
to such questions in a way that is not possible with purely statistical
programs. 3) We wish to constrain the rule formation activity in ways
that are natural to a working chemist. For example we may want the
program to avoid fragmentations involving aromatic rings or two bonds
to the same atom, or, as mentioned above, we may want to look at
fragmentations accompanied by loss of CO or other neutral fragments.

Rules can be formulated to explain data in terms that are known
to be meaningful to chemists; most importantly, the rule formation
constraints are under the control of the chemist. Also we feel that
this approach provides a high level of generality in describing
fragmentation processes. Although the rules are developed in the
context of a particular group of compounds, they are not tied to that
group but can be applied in other contexts, or compared to rules
developed from other groups of compounds in a search for comunon
features of the rules. For these reasons, we believe that the Meta-
DENDRAL program offers a powerful and useful complement to pattern
recognition programs for finding relationships between structures and
spectral data.

3.2.2 HPP-77-4
Title: Applications of Artificial Intelligence for Chemical Inference
XXV. A Computer Program For Automated Empirical 13C K-.IR Rule
Formation

Authors: Tom M. Mitchell and Gretchen A. Schwenzer

To demonstrate the generality of the methods developed for

DAHC5-73-C-0435 Final Report 23

automatic rule formation, a new application domain was selected. The
new ta ? was the generation of empirical rules for associating the data
from C NMR experiments with local structural environments in a
molecule. A program was written for this purpose, rules were generated
for a chosen set of experiments and then applied to data not included
in the training set. For two classes of compounds (acyclic amines and
paraffins) the program ranked the correct structure either first or
second in 33 of the 35 tests.

3.2.3 HPP-77-6

Title: Model-Directed Learning of Production Rules

Authors: Bruce G. Buchanan and Tom M. Mitchell

This paper describes the learning strategy employed in Meta-
DENDRAL, and is a predecessor to Mitchell's work on version spaces.
The Meta-DENDRAL program is described in general terms, defining the
syntax and semantics of the rules employed therein.

In contrast to statistical approaches, Meta-DENDRAL utilizes a
semantic model of the domain. This model has been included for two
important reasons. First, it provides guidance for the rule formation
program in a space of rules that is much too large to search
exhaustively, especially when the input data have anTbiguous
interpretations. Second, it provides a check on the meaningfulness of
the associations produced by the program, in a domain where the trivial
or meaningless associations far outnumber the important ones.

The learning program is based on a generator of production
rules of a predetermined syntax operating under the constraints of a
semantic world model. In common with other induction programs, it also
contains an instance selection component and a critic for evaluating
potential rules.

The learning cycle is a series of "plan-generate-test" steps as
found in many AI systems. After pre-scanning a set of several hundred
I/0 pairs, the program searches the space of rules for plausible
explanations and then modifies the rules on the basis of detailed
testing. When rules generated from one training set are added to the
model, and a second (or next) block of data examined, the rule set is
further extended and modified to explain the new data. That is, the
program can now iteratively modify rules formed from the initial
training set (and add to them), but it is currently unable to "undo"
rules.

0A

DARCl5-73-C-0435 Final Report 24

3.2.4 HPP-77-13
Title: Version Spaces: A Candidate Elimination Approach to Tule
Learning

Author: Tom M. Mitchell

Meta-DENDRAL continues to play an important role as a test bed
for exploring new ideas in automatic theory formation. Mitchell has
developed a new approach to rule learning which is guaranteed to find,
without backtracking, all rule versions consistent with a set of
positive and negative training instances. The algorithm put forth uses
a representation of the space of those rules consistent with the
observed training data. This "rule version space" is modified in
response to new training instances by eliminating candidate rule
versions found to conflict with each new instance. The use of version
spaces is discussed in the context of Meta-DENDRAL.

The program describes the method of representing version spaces
in terms of maximally general and maximally specific rule sets. This
representation appears to be well suited for learning rules from
sequentially presented training instances. A candidate elimination
algoritm has been shown which will find all rule versions consistent
with all training instances. Backtracking is not required for noise-
free training instances, and the final result is independent of the
order of presentation of instances.

Version spaces provide at once a compact summary of past
training instances and a representation of all plausible rule versions.
Because they provide an explicit representation for the space of
plausible rules, version spaces allow a program to represent "how much
it doesn't know" about the correct form of the rule. This suggests the
utility of the version space approach to problems such as intelligent
selection of training instances and merging sets of independently
generated rules.

3.2.5 HPP-77-14
Title: A Model For Learning Systems

Authors: Reid G. Smith, Tom M. Mitchell, Richard Chestek, and
Bruce G. Buchanan

Further study of learning systems (LSs) has led to the
development of a general model for the design of such systems. The
model provides a common vocabulary for describing different types of
learning systems which operate in a variety of task domains. It
encourages classification and comparison of LSs and helps identify
unique or strong features of individual systems. We believe the model
is a useful conceptual guide for LS design, because it isolates the

1D4.C15-73-C-0435 Final Report 25

essential functional components, and the information that must be
available to these components. The model also suggests a layered
architecture for learning at different levels of abstraction.

The learning system has been used to characterize several
existing systems: Meta-DENDRAL, Winston's program to learn to identify
block structures, Samuel's checker playing program, Waterman's program
for learning poker strategy, and London's adaptive control system.

3.3 Studies of Production Rule Systems
40

3.3.1 HPP-75-7
Title: An Oerview of Production Systems

Authors: Randall Davis and Jonathan King

One of the most widely used programming tools in knowledge
engineering is the production system. In 1975, Davis and King surveyed
the state of the art in PS methodology. Their overview defined two
distinct classes of PS's: those used in psychological modelling
research (e.g., PSG) and those used in high performance knowledge-based
systems (e.g., MYCIN). Although the two technologies are similar, the
goals are quite different for the two applications.

The overview continues with some speculations on the nature of
appropriate and inappropriate domains for PSs, characterizes the common
elements of all PSs, and presents a taxonomy for PSs, selecting four
dimensions of characterization.

For those wishing to build knowledge-based expert systems, the
homogeneous encoding of knowledge offers the possibility of automating
parts of the task of dealing with the growing complexity of such
systems. Knowledge in production rules is both accessible and
relatively easy to modify. It can be executed by one part of the
system as procedural code, anC, examined by another part as if it were a
declarative expression. Despite the difficulties of prograinning PSs,
and their occasionally restrictive syntax, the fundamental methodology
at times suggests a convenient and appropriate framework for the task
of structuring and specifying large amounts of knowledge. It may thus
prove to be of great utility in dealing with the problems of complexity
encountered in the construction of large knowledge bases.

3.3.2 HPP-75-6
Title: Production Rles as a Representation of a Knowldge-Based
Consultation Program

DA4Cl5-73-C-0 435 Final Report 26

Authors: Randall Davis, Bruce B. Buchanan and Edward Shortliffe

The appropriateness of the production rule methodology for a
knowledge-based consultation program is explored in this paper,
generalizing from the MYCIN example. After defining their three design
goals of usefulness (including competence), maintenance of an evolving
knowledge base, and support of an interactive consultation, the authors
reoort:

Our experience has suggested that production rules offer a
knowledge representation that greatly facilitates the accomplishment of
these goals. Such rules are straightforward enough to make feasible
many interesting features beyond performance, yet powerful enough to
supply significant problem solving capabilities. Among these features
are the ability for explanation of system performance, and acquisition
of new rules, as well as the general 'understanding' by the system of
its own knowledge base.

3.3.3 HPP-77-28
Title: k Production System for Automatic Deduction

Author: Nils Nilsson

Logical deduction is a basic activity in many artificial
intelligence (AI) systems. Specific applications in which deduction
plays a major role include question-answering, program verification,
mathematical theorem proving, and reasoning about both mundane and
esoteric domains.

In this paper, Nilsson proposes a deduction system that enjoys
most of the power of the formal logical systems without embracing their
inefficient uniformity. It uses specialized, domain-dependent
inference rules that are encoded as productions. As with most
production systems, it can easily be modified and extended by adding
new production rules or by modifying old ones. The system is based on
a synthesis of several ideas from various authors in artificial
intelligence and automatic theorem proving.

The advantages of production systems (Davis and King, HPP-75-7)
are sufficiently impressive that one would like to model the design on .,.,
that paradigm. Previous production system designs for deduction
systems, however, had somewhat limited logical power. (An example is
the restriction to Horn clauses in Kowalski, Logic for Problem Solving,
University of Edinburgh School of Artificial Intelligence .Memo No. 75.)
We want the system to be able to employ the full expressive power of
the first-order predicate calculus, including the ability to reason
with disjunctive assertions, negations, and quantification of
variables. Certainly the system should be sound (i.e., it should not

DAHC5-73-C-0435 Final Report 27

prove invalid expressions). With regard to completeness (i.e., being
able to prove invalid any theorem), we are less doctrinaire. We insist
only that it behave reasonably according to criteria specific to the
domain of application. Any incompletenesses that cannot be tolerated
must be repairable by evolutionary changes to the system.

The classical model of theorem oroving in the predicate
calculus involves three major components. First, there is a set of
axioms or assertions that express information about the domain of
application. For geometry, for example, these would be the fundamental
postulates plus whatever other theorems we want to start with. (It is
neither necessary nor desirable to limit the assertions to some
primitive or minimal set.) Second, there are domain-independent,
uniform rules of inference (such as resolution, modus ponens) that can
be used to derive new assertions from existing ones. Finally, there is
a conjectured theorem, or goal, to be proved. A proof consists of a
sequence of inference rule applications ending with one that produces
the goal.

AI research has produced an important deviation from this
approach. The assertions are divided into two distinct sets: facts and
rules. Facts are specific statements about the particular problem at
hand. For example, "Triangle ABC is a right triangle" would be
expressed as a fact. Rules are general statenents, usually involving
implications or quantified variables. For example, "The base angles of
an isoceles triangle are equal" would be expressed as a rule. Rules
are used in combination with facts to produce derived facts. One could
think of them as specialized, domain-dependent inference rules.

This distinction can be further explained by a simple example.
In the classical approach, from the two assertions A and A=>B we could
derive the assertion B by modus ponens. In the Al approach, from the
fact A we could derive the fact B by using the special rule A=>B. The
distinction between facts and rules is an important part of our
deduction system.

The rules will be used as production rules. They will be
invoked by a pattern matching process. Some will be used only in a
forward direction for converting facts to derived facts; others will be
used only in a backward direction for converting goals to subgoals.
The developing sets of facts and goals will be represented by separate
tree structures. Goals will be represented in an AND/OR goal tree, and
facts will be represented in a newly proposed structure that we shall
call a fact tree. Rules are employed until the fact tree joins the
goal tree in an appropriate manner. The entire process will be under
the supervision of a control strategy that decides which applicable
rule should be employed at any stage. We shall not propose any
specific control strategies in this paper but shall merely point out
that the designer has the freedom to use any domain-specific
information whatsoever in the control system.

* : _ . . ". . . . _ - . . - -. .

DAHC15-73-C-0435 Final Report 28

Several designs of this general sort have been proposed (see,
for example, Kowalski, op.cit.), but most of them have had restrictions
on the kind of logical expressions that could be acconiiodated. Although
AND/OR goal trees have been used before, the notion of a fact tree,
dual to the goal tree, allows some interesting correspondences, such as
that between "reasoning by cases" and dealing with conjunctive goals,
for example.

It is hoped that the proposed system will serve as the
beginning of a theoretical foundation for the various applications of
"rule-based systems" now begin developed by AI research. Many of these
systems are fundamentally deduction systems even though some of them
allow uncertain or probabilistic facts and rules. Extending theFl present system so that it could also deal with uncertain knowledge

would be a valuable future project.

3.4 Signal Understanding Systems

3.4.1 HPP-77-2
Title: A Knowledge-Based System for the Interpretation of Protein
X-Ray Crystallographic Data

Authors: %obert S. Engelmore and H. Penny Nii

A description of the problem of protein crystal structure
inference is presented here, emphasizing those aspects of the analysis
which are primarily non-numerical. The problem is one that requires
the integration of multiple sources of knowledge, wherein the expert
problem solver must interpret his experimental data in the light of
general principles of protein chemistry, stereo-chemical constraints,
specific details of the problem at hand, and heuristic problem solving
strategies. A characteristic feature of the problem solving process is
that one knowledge source enables other KSs to build further.

In designing a system to infer protein structures fram x-ray
crystallographic and other physical data, it was necessary to consider
the appropriateness of other knowledge based system designs. The
knowledge organization and control structures employed in Heuristic
DENDRAL, MYCIN, HEARSAY II and HASP were considered. The use of a
global knowledge base, as employed in HEARSAY II, and the event-driven
control structure of HASP were found to be design elements well suited
to the protein structure inference system (now called CRYSALIS).

-- ' " V -.

D AC5-73-C-0435 Final Report 29

3.4.2 HPP-77-7
Title: Rule-based Understanding of Signals

Authors: H. Penny Nii and Edward A. Feigenbaun

Knowledge-based programs which employ pattern-invoked inference
methods were designed and at least partially implemented in two task
domains. Both tasks are concerned with the interpretation of large
quantities of digitized signal data. The task of SU/X is to understand
"continuous signals," that is, signals which persist over time. The
task of SU/P is to interpret protein x-ray crystallographic data. Some
features of the design are: (1) incremental interpretation of data
employing many different pattern-invoked sources of knowledge, (2)
production rule representation of knowledge, including high level
strategy model-driven techniques within a general hypothesize-and-test
paradigm; and (4) multilevel representation of the solution hypothesis.

SU/X and SU/P are two application programs that have been

twritten to reason toward an understanding of digitized physical
signals. The essential features of the programs' design are: (1) data-
and model-driven, opportunistic modes of hypothesis formation in which
the "control" is organized hierarchically, and (2) a globally
accessible hypothesis structure augmented by focus-of-attention and
historical information which serve to integrate diverse sources of

* knowledge. The basic design is similar in many ways to the HEARSAY-II
Speech Understanding System design. It is applicable to many different
types of problems, especially to those problems that do not have
computationally feasible "legal move generators" and must therefore
resort to opportunistic generation of alternate hypotheses.

The use of production rules to represent control/strategy
knowledge offers the advantages of uniformity of representation and
accessibility of knowledge for purposes of augmentation and
modification of the knowledge base. Because the line-of-reasoning is
often a complex compounding of the elemental steps indicated by the
rules, a dynamic explanation capability is needed.

3.5 Discovery as Heuristic Search

3.5.1 HPP-76-8
Title: An Artificial Intelligence Approach to Discovery in
Mathematics as Heuristic Search

Author: Douglas Lenat

In his Ph.D. thesis, Lenat describes a program, called "AM",

IiLI

DAHCI5-73-C-0435 Final Report 30

which models one aspect of elementary mathematics research: developing

new concepts under the guidance of a large body of heuristic rules.
"Mathematics" is considered as a type of intelligent behavior, not as a
finished product.

This thesis is concerned with creative theory formation in
mathematics: how to propose interesting new concepts and plausible
hypotheses connecting them. The experimental vehicle of the research
is a computer program called AM. Initially, AM is given the
definitions of 115 simple set-theoretic concepts (like "Delete",
"Equality"). Each concept is represented internally as a data
structure with a couple dozen slots or facets (like "Definition",
"Examples", "Worth"). Initially, most facets of most concepts are
blank, and .M uses a collection of 250 heuristics - plausible rules of
thumb - for guidance, as it tries to fill in those blanks. Some
heuristics are used to select which specific facet of which soecific
concept to explore next, while others are used to actually find some
appropriate information about the chosen facet. Other rules prompt AM
to notice simple relationships between known concepts, to define
promising new concepts to investigate, and to estimate how interesting
each concept is. The same heuristics are used both to suggest new
directions for investigation, and to limit attention: both to sprout
and to prune.

Each concept is represented as a frame-like structure with 25
different facets or slots. The types of facets include: Examples,
Definitions, Generalizations, Domain/Range, Analogies, Interestingness,
and many others. Modular representation of concepts provides a
convenient scheme for organizing the heuristics; for example, the
following strategy fits into the Examples facet of the Predicate
concept: "If, empirically, 10 times as many elements fail some
predicate P, as satisfy it, then some generalization (weakened version)
of P might be more interesting than P." AM considers this suggestion
after trying to fill examples of each predicate.

The particular mathematical domain in which AM operates depends
upon the choice of initial concepts. Currently, AM begins with nothing
but a scanty knowledge of concepts which Piaget might describe as
prenu;merical: Sets, substitutions, operations, equality, and so on. In
particular, AM is not told anything about proof, single-valued
functions, or numbers.

From this primitive basis, AM quickly "discovered" elementary .

numerical concepts (corresponding to those we refer to as natural
numbers, multiplication, factors, and primes) and wandered around in
the domain of elementary number theory. AM was not designed to prove
anything, but it did conjecture many well-known relationships (e.g.,
the unique factorization theorem).

1k

DAHC15-73-C-0435 Final Report 31

AM is forced to judge a priori the value of each new concept,
to lose interest quickly in concepts which aren't going to develop into
anything. Often, such judgments can only be based on hindsight. For
similar reasons, AM has difficulty formulating new heuristics which are
relevant to the new concepts it creates. Heuristics are often merely
compiled hindsight. While AM' s "aporoach" to empirical research may be
used in other scientific domains, the main limitation (reliance on
hindsight) will probably recur. This prevents A4 from progressing
indefinitely far on its own.

This ultimate limitation was reached. AM's performance
degraded more and more as it progressed further away from its initial
base of concepts. Nevertheless, AM demonstrated that selected aspects
of creative discovery in elementary mathematics could be adequately
represented as a heuristic search process. Actually constructing a
computer model of this activity has provided an experimental vehicle
for studying the dynamics of plausible empirical inference.

3.6 Planning in an Experimental Science

3.6.1 HPP-77-5
• Title: A Review of Knowledge-Based Systems as a Basis for a Genetics

Experiment Designing System

Authors: Mark Stefik and Nancy Martin

This report is a slightly revised version of Stefik's thesis
proposal submitted in December 1976. It is proposed here that the
appropriate assemblage of knowledge-based problem solving techniques
can be applied to the task of planning. The objective is a program,
called VOWZEN, which serves as a laboratory assistant to a molecular
geneticist. The program is expected to perform experiment checking and
experiment planning. Experiment checking involves the computer
simulation of previously designed experiments. This means that a set
of input samples would be defined and a specific sequence of laboratory
steps would be given. The computer system would then simulate the
sequence of transformations on the representations of the samples
terminating finally with a set of new samples. These new samples can
be compared with actual laboratory results as a test of the initial
hypotheses or of the accuracy of the transformations in the knowledge
base. Such a system would be used by the system designers for
debugging the transformation knowledge base and by geneticists for
comparing the predicted results from the MOGEN system against actual
laboratory experiments. The checking facility would also be used to
compare alternate experimental designs before investing any laboratory
effort. A more sophisticated task for the program is the designing of

DAHCI5-73-C-0435 Final Report 32

experiments. This means that the program would need to know of the
strategies involved in building sequences of transformations. This
strategy knowledge would be in addition to the legal moves of genetics
and encompasses a broad range of knowledge including such things as
plan sketches for various contexts, design cost heuristics which
predict the costs of considering certain design options, and mechanis

for evaluating the relevance and specificity of laboratory
transformations to the current problem.

A substantial oart of the effort in creating a system capable
of designing experiments as a laboratory assistant centers around the
creation and maintenance of an extensive genetics knowledge base. This
implies a number of system capabilities to facilitate knowledge
acquisition, integration, and debugging which are discussed further in
the report.

The report contains a detailed review of research in problem
solving and planning, and several extant systems (MYCIN, TEIRESIAS,
HEARSAY) which manage large knowledge bases. The thrust of this
proposal is based on the contention that many of the ideas which have
proved important for the acquisition and management of object knowledge
may be extended to cover action and strategy knowledge as well.

Parallel to the schemata based rule knowledge base is the
concept of expressing the dynamic knowledge of the problem solving
process through schemata. This leads to the development of the concept
of a planning network. This network provides a mechanism for
expressing the problem solving state in terms of a small number of node
types corresponding to basic problem solving steps used at all levels.
The planning network idea combines and extends the best elements of
HEARSAY's blackboard NOAH' s procedural network, and schemata based
representations.

3.6.2 HPP-77-19

Title: Knowledge Base Management for Experiment Planning

Authors: Nancy Martin, Peter Friedland, Jonathan King and Mark Stefik

This is a progress report on the MOLGEN system as of spring
1977. The various types of knowledge required for planning experiments
in molecular genetics are discussed, followed by the presentation of a
"schema system" for representing all thlese types uniformly. Each
schema will be composed of slots witn associated value or type
specifications and attached procedures. All schemata will be organized
in a generalization/specialization hierarchy similar to that of other
systems. Associated with each schema will be a model which summarizes
the ways in which the various slots have been filled. These schemata
and their associated models provide the knowledge needed by management

DAqC5-73-C-0435 Final Report 33

routines for acquiring and updating the knowledge base and for many
problem solving tasks. The issues involved in representing knowledge
in such a schema system are sLmilar to the issues when the
representation is a semantic net.

A novel aspect of the design of the MOLGEN knowledge base is
the representation of all types of problem solving knowledge in a
common formalism -- as instances of schemata. Procedural knowledge
will be represented in such a way that the system can easily inspect
any procedure. The schema system provides a mechanism for breaking
procedures into component parts which can be addressed separately, and
are thus accessible to the system. This aids acquisition and use
during problem solving.

3.7 Knowledge-based Programmer's Assistant

3.7.1 HPP-77- (Thesis in preparation)
Title: Thesis

Author: Denny Brown

Knowledge-Based Progranmer' s Assistant

This research began as an attempt to apply the research
paradigm of the Heuristic Prograrming Project to computer program
debugging. The goals of the research were to provide an analysis of
debugging which would be a contribution to the art of programming and
to produce a performance program capable of providing sophisticated
debugging assistance to programmers. The analysis and the
implementation of the debugging system (DBSYS) were developed in
concert.

Analysis of Debugging

Debugging is viewed as a three dimensional space. The first
dimension divides debugging into three problem solving tasks:
Detection, Diagnosis, and Cor rection. The Detection phase of debugging
involves the process of deciding that a problem indeed exists in the
program. The Diagnosis phase involves the process of determining and
isolating the cause of the problem. The Correction phase involves the
process of deciding what modification is to be made in the program and
making it. Along the second dimension, errors are divided into four
classes: Syntactic, Semantic, Logical, and Pragmatic. Briefly, a
Syntactic error occurs when the text of the program violates a rule of
the programming language's syntax. A Semantic error occurs when a
syntactically correct program attempts to execute operations which

S -

DaC15-73-C-0435 Final Report 34

violate the semantics of the language, or whose results are undefined.
A Logical error occurs when a program which is syntactically and
semantically correct gives results which are "wrong". A Pragmatic error
occurs when a program runs correctly but violates soie additional
constraint, such as high cost. Along the third dimension, we divide
errors into three classes: Criterion, Consistency, and Completeness.
Criterion bugs are bugs which occur in a program because the programmer
has an incomplete or incorrect idea of the correctness conditions of
the program. Consistency bugs occur when a programmer knows what he
wants done, and how to do it, but does not construct 11he program
accordingly. Completeness bugs occur when a programmer knows what he
wants done, but doesn't really know how to do it.

Design of the DBSYS debugging system

The design of DBSYS thus evolved into the design of three
separable mechanismis. The Acquisition sub-system is designed to obtain
from the prograiner necessary information concerning what the program
is supposed to do. The Detection sub-system is designed to determine
that the program doesn't do -what it is supposed to do. The _urpose of
the Diagnosis and Correction sub-system is to find and fix the cause of
the problem.

Performance was the main concern in the design of the Diagnosis
and Correction stage. According to the global design principles, the
system should be potentially attractive to programmers in their normal
mode of operation. Consequently, there was strong motivation to have
the Diagnosis and Correction mechanism do a very complete job. The
system is designed to do all of the following:

1) Determine the location of the cause of the Error(s)
detected.

2) Determine a modification to the program which would
eliminate the Error.

3) Modify the text of the program accordingly. '

4) Repair the executing environment in order to continue the
execution as if the Error had not occurred.

In order to accomplish these tasks, two corollary sets of
problems were faced. The first set involved the cognitive, problem-
solving aspect of the work, namely, deciding upon a plan of action.
The second set of problems dealt with the systems orogranming necessary
to carry out the plan. Solutions to these two sets of problems were
seen as potentially quite different. Consequently, the Diagnosis and
Correction stage was designed in two comingled parts. The cognitive
component is a knowldge-based, production-rule oriented system. Some

DAHCI5-73-C-0435 Final Report 35

of the primitives of the rule system, however, are complex system
functions to handle the details of gathering information and making
modifications.

Current state of progress

The OBSYS system runs and debugs programs. As yet, there is no
theoretical characterization of the class of errors which the system
can handle. Whether the system can detect, diagnose, and/or correct a
particular bug depends on: i) The information provided by the
programer in his description of his program. 2) The current state of
the knowledge base of rules, which is always growing. 3) The
"closeness" of the program to being correct. (E.g. A double-bug, where
two problems interact, can't be corrected. The rule base knows more
about problems which occur in reasonably well-structured programs which
are almost right.)

A doctoral thesis which describes this work is currently being
written.

3.8 Distributed Comouting

3.8.1 HPP-77-12
Title: The Contract Net: A Formalism For the Control of Distributed
Problem Solving

Author: Reid G. Smith

The following short paper, presented at the 5th IJCAI,
introduces the concept of the contract net. The research in this area
is still at an early stage, but simulations have already shown the idea
to be promising, and its use in the area of data-base management is
under investigation (see below).

Distributed processing offers the potential for high speed,
reliable computation, together with a means to handle applications that
have a natural spatial distribution. In this paper, distributed
processing is defined as processing that is characterized by physical
decomposition of the processor into relatively independent processor
nodes. Recent advances in LSI technology, expected to result in single
silicon wafers with at least 100 active elements by 1981, indicate that
it is reasonable to contemplate designs which incorporate large
networks of single chip processor nodes.

In this paper we examine the control of problem solving in such
an environment, where most information is local to a node, and

A

-A-

DAHC5-73-C-0435 Final Report 36

relatively little information is shared by the complete network.
Individual nodes correspond to "experts" which cooperate to cplete a
top level task (analogous to Lenat's "beings"). The distributed
processor is thus to be composed of a network of "loosely-coupled",
asynchronous nodes, with distributed executive control, a flexible
interconnection mechanism, and a minimum of centralized, shared
resources. This puts the emphasis on "coarse grain" parallelism, in
which individual nodes are primarily involved with computation (large
kernel tasks), pausing only occasionally to communicate with other
nodes.

The CONTRACT NET represents a formalism in which to express the
control of problem solving in a distributed processor architecture.
Individual tasks are dealt with as contracts. A node that generates a
task broadcasts its existence to the other nodes in the net as a
contract announcement, and acts as the contract manager for the
duration of that contract. Bids are then received from potential
contractors, which are simply other nodes in the net. An award is made
to one node which assumes responsibility for the execution of that
contract. Subcontracts may be let in turn as warranted by task size or
a requirement for special expertise or data not in the possession of
the contractor. Ahen a contract has been executed, a report is
transmitted to the contract manager.

Contracts may be announced via general broadcast, limited
broadcast, or point-to-point communications mechanisms, depending on
information about relevant contractors available to the contract
manager. If, for example, a manager has knowledge about the location of
particular data, then its contract announcement will be directed to the
node(s) believed to possess that data, so that the complete network is
not needlessly involved.

Contracting effectively distributes control throughout the
network, thus allowing for flexibility and reliability. Decisions
about what to do next are made as a result of relatively local
considerations, between pairs of processors, although the nature of the
announcement-bid-award sequence maintains an adequate global context;
that is, the decision to bid on a particular contract is made on the
basis of local knowledge (the task being processed in the node
contemplating a bid), and global knowledge (other current contract
announcements). The formalism also incorporates two way links between
nodes that share responsibility for tasks (managers and contractors).
The failure of a contractor is therefore not fatal, since a manager can
re-announce a contract and recover from the failure.

A node in the CONTRACT NET is composed of a contract processor,
management processor, ccmmunications interface, and local memory. The
contract processor is responsible for the applications-related
computation of the node. The management processor is responsible for

0

DAIC15-73-C-0435 Final Report 37

network communications, contract management, bidding, and the
management of the node itself. Individual nodes are not designated a
priori as contract managers or contractors. Any node can take on either
role, and during the course of problem solving, a particular node
normally takes on both roles simultaneously for different contracts.

A contract is represented as a record structure with the
following fields: NAME - the name of the contract, NODE - the name of
another processor node associated with the contract, PRIORITY - a
description of the "importance" of the contract, TNSK - a description
of the task to be performed, RESULTS - a description of the results
obtained, and SUBCQI'RCTS - a pointer to the list of subcontracts that
have been generated from the contract.

Contracts are divided into two classes in a node: those for
which the node acts as contractor, and those for which it acts Bs
manager. The node field of a contract is filled accordingly - with the
name of the contract manager in the first case, and with the name of
the contractor in the second case. Subcontracts waiting for service
are held at the node that generated them, with an empty node field.

The priority description is used by a management processor to
establish a partial order over contracts to be announced, and by
potential contractors to order contracts for the purpose of bidding.
Similar descriptions are also used to order contractors for the purpose
of awards. The concept of priority thus must be generalized over
simple integer descriptions to include such (layered) descriptions of
potentially arbitrary complexity, which include both applications-
related and architecture-related information.

A task description also contains two types of information: the
local context in which the task is to be executed, and the applications
software required to execute it. This information is passed when a
contract is awarded. Depending on the task, the required global
context may be passed with the award, or further contracts may be let
to obtain it. Software passed to a node for execution of a particular
contract is retained for future use, and its oresence has a favorable
effect on the future bids of that node.

A SAIL simulation has been constructed to test the formalism.
It accepts simple applications programs, and maos them onto a simulated
distributed processor with a variable number c .odes. The simulation
is being used to determine the costs associated with the formalism, in

* terms of both processor and conmunications overhead, and the decrease
in computation time that can be expected for various applications.
Distributed heuristic search is presently being examined in this way,
and alternatives in distributed deduction will be examined in the near
future.

S .A

DAHCI5-73-C-0435 Final Report 38

3.8.2 HPP-77-21
Title: Application of the Contract Net Protocol To Distributed Data
Bases

Authors: Hector Garcia-Molina and Gio Wiederhold

One application of the contract net protocol is to distributed
data bases. In a distributed data base system, the data base is
physically partitioned over several computing facilities while allowing
integrated access to the data. Each computing facility, or node,
includes a process which is in charge of the management of some section
of the data base. Each node is connected to the other nodes to allow
the sharing of data. A model for a distributed data base, using the
concept of a contract, was developed by Garcia-Molina and Wiederhold.

Processing in this node is defined as follows: The user enters
his query at a network node and it becomes a contract for the local
contract processor. The query does not necessarily contain a priori
information giving the relation name or the node name where relevant
relations reside. A query which only involves local data will be
answered directly and the result will be sent to the user. Since we
are mainly interested in data base networks with intensive local node
activities, we expect that most of the queries will be of this type.

If the interaction cannot be completely processed locally, then
it must involve data from other nodes. The first step is to obtain the
necessary domain knowledge from other nodes. The internal schemas
provide the knowledge required to translate the query into a set of
precise machine executable commands. The local processor will extract
from the query all the terms it does not understand and will broadcast
a contract announcement containing these terms. Other nodes on the
network will examine the terms and if they find any of them in one of
their internal schemas, they will return the relevant entries, the
location of the relation, and the protection information in the form of
a bid.

When the contract manager receives the bids, he will use the
information in them to complete the query analysis. Having all the
necessary information, the manager can generate the contract awards.
The nodes that receive awards may in turn generate subcontracts if
necessary.

From the bidding information, the contract manager will be able
to decide which nodes are best equipped to solve the query (i.e., what
nodes can respond faster, etc.). The manager can even decide to try
processing the query in multiple ways. He will then issue contract
awards to several nodes and will accept the first result that arrives.
An option available to the manager is to issue an award to the node
that has the prime copy of a relation and also to the nodes that have

7-7

DAHC5-73-C-0435 Final Report 39

the backup relations. Because each relation might be stored
differently or because the computing loads at the nodes vary, one node
will send the answer back before the others. This way the response
time of the system can be improved. The contractor may also keep the
bid information around for a time, in case other similar queries
follow. This "working set" strategy has been suggested in (7].

The following example will illustrate the processing mechanism
in the data base. Suppose a user asks the query "FIND SALARY WHERE
&4PtYEE-NAME = FRED" at node X which has no data on salaries. The
node will broadcast a contract announcement containing the
incomprehensible words "SALARY", "EMPLOYEE-IA4E", and "FRED". It might
receive the following bids: From node A : I can give you SALARY if you
give me SOC-SECURITY-NUM. From node B : I can give you SALARY if you
give me JOS-RATING. From node C : If you give me U-PtOYEE-S4kAE, I will
give you SOC-SECURITY-NU)4, POSITION, etc.

Now node X can initiate one solution: Send a contract award to
node C to get the social security number and then using this number
issue another contract to node A to find the requested salary. While
this solution attempt is going on, node X can attempt another approach.
It broadcasts a contract announcement containing the word JOB-RATING
and gets the followingbid:

* From node D : I can give you JOB-RATING if you give me
POSITION. With this information, node X can start up a parallel
solution attempt: Issue an award to node C to get the employee's
position, then one to D to get the job rating and finally one to B to
get the desired answer.

3.8.3 HPP-77-27

Title: Overview and Bibliography of Distributed Data Bases

Author: Hector Garcia-Molina

Garcia-Molina has written an overview and compiled an annotated
bibliography of distributed data bases. These data bases are
classified along ten different dimensions. Current areas of research
are also categorized.

3.9 General discussions and surveys of HPP research activities

3.9.1 HPP-74-3
Title: Scientific Theory Formation by Computer

Author: Bruce G. Buchanan

DAHC5-73-C-0435 Final Report 40

This paper is an instance of our effort to transfer the
concepts and results of the HPP work in automatic theory formation to
the scientific community. uchanan discusses theory formation in thecontext of the 'ta-DENDRAL program, discussing in detail the four

major steps of data selection, data interpretation, rule generation,
and rule modification. The conclusion states:

"Chemists have also found that the output of Meta-DENDRAL alone
was extremely useful to them, for its meticulous determination of all
the explanatory processes that they would consider "plausible." we
further expect the program to contribute to this domain of science by
suggesting refinements or generalizations that chemists find useful.

Meta-DENDRAL has at least one serious limitation, though, which
is common to all current computer approaches to theory formation. The
program appears hopelessly bound to a model of the task domain. The
primitive terms and relations that the prog .arn uses to define its rule
space must be explicitly supplied to the program in some form. In the
limit, nothing really "new" can be discovered by such a program. This
type of objection has been repeatedly raised against the possibility of
machine intelligence, since the first intelligent programs were
conceived. Yet the criticism is unsettling.

A serious possibility for pushing the objection back another
level, at least, is to search a space of models for the "best" one in
which to do theory formation at any one time. This possibility has not

.been explored, because this is a second-order investigation in a field
where first-order investigations are just beginning to succeed.
However, there is no reason to believe that model-building is
theoretically impossible any more than rule-building is impossible.

3.9.2 HPP-74-4

Title: Computer Applications: Introductory Remarks

Author: Edward A. Feigenbaum

Most of this report is reproduced in Sect. 2.1 above.

3.9.3 HPP-75-4
Title: Judgmental Knowledge as a Basis for Computer-Assisted Clinical
Decision Making

Author: Edward H. Shortliffe

The DENDRAL programs have for many years provided case studies
in which various aspects of AI research were explored: generality vs
specificity, representation of knowledge, heuristic search, etc.

DAHC15-73-C-0435 Final Report 41

* Recently the programs also have served as a testing ground for
exploring technology transfer through the development of a
collaborative research community. In a contribution to the book,
Computer Networking and Chemistry (edited by Peter Lykos), Carhart et
al discusses many of the hwian engineering issues which were faced in
making the DENDRAL programs acceptable to users outside the Stanford
community.

3.9.4 HPP-75-13
Title: zpplications of Artificial Intelligence to Scientific
Reasoning

Author: Bruce G. Buchanan

This is an instance of our technology transfer efforts. The
paper attempts to distill the knowledge derived from our successful
transfer of AI programs, specifically, Heuristic DENDRAL and Meta-
DENDRAL, from the research computer science laboratory to the chemistry
laboratory. The desiderata of high performance, use of extensive task-
specific knowledge, flexibility, and interactive programs are
discussed. Other issues discussed in the paper include the use of the
plan-generator test paradigm, the choice of the appropriate level of
conceptualization, the rule of the expert, and the choice of
programming language.

3.9.5 HPP-77-15
Title: A Correlation Between Crystallographic Computing and
Artificial Intelligence

Authors: E. A. Feigenbaum, R. S. Engelmore, C. K. Johnson

This paper resulted from an invited talk given by Feigenbaum to
the American Crystallographic Association in January, 1976. The paper
appeared in Acta Crystallographica, a leading technical journal for~crystallographers, and represents another effort to introduce the
themes of AI research to scientists in various disciplines. A brief
overview is given of some applied artificial intelligence research
projects in scene analysis, medical consultation, mass-spectral
analysis, knowledge acquisition, chemical synthesis and density-map
interpretation. These examples are given to illustrate the thesis that
symbolic computing techniques are indeed useful in scientific computing
applications.

3.9.6 3PP-75-16
Title: Some Considerations for the Implementation of Knowledg-3ased
Expert Systems

16

DAHC15-73-C-0435 Final Report 42

Authors: E. H. Shortliffe and R. Davis

The transfer of a high performance AI application program to
the target community involves considerably more than the implementation
and debugging of the program. The authors define eight stages, or
milestones, which a system must pass before it evolves to a real
utility outside the computer science community. The fundamental point
is that these systems should be designed with all eight milestones in
mind, and introduced to their users carefully.

.4

3.9.7 HPP-77-25
Title: The Art of Artificial Intelligence

Author: Edward A. Feigenbaum

In this invited paper, presented at the Fifth IJCAI, Feigenbaum
examines emerging themes of knowledge engineering, illustrates them
with case studies drawn from the work of the Stanford Heuristic
Programning Project, and discusses general issues of knowledge
engineering art and practice. The major themes are described as
follows:
Generation-and-test: Omnipresent in our experiments is the "classical"

generation-and-test framework that has been the hallmark of AI
programs for two decades. This is not a consequence of a doctrinaire
attitude on our part about heuristic search, but rather of the
usefulness and sufficiency of the concept.

Situation = Action Rules>: We have chosen to reoresent the knowledge of
experts in this form. Making no doctrinaire claims for the universal
applicability of this representation, we nonetheless point to the
demonstrated utility of the rule-based representation. From this
representation flow rather directly many of the characteristics of our
programs: for example, ease of modification of the knowledge, ease of
explanation. The essence of our approach is that a rule must capture
a "chunk" of domain knowledge that is meaningful, in and of itself, to
the domain specialist. Thus our rules bear only a historical
relationship to the production rules used by Newell and Simon (1972)
which we view as "machine-language programming" of a recognize => act
machine.

The Domain-Specific Knowledge: It plays a critical role in organizing
and constraining search. The theme is that in the knowledge is the
power. The interesting action arises from the knowledge base, not the
inference engine. We use knowledge in rule form (discussed above), in
the form of inferentially-rich models based on theory, and in the form
of tableaus of symbolic data and relationships (i.e. frame-like
structures). System processes are made to conform to natural and
convenient representations of the domain-specific knowledge.

L4-

-. -w ..

DAHCI5-73-C-0435 Final Report 43

Flexibility to modify the knowledge base: If the so-called "grain size"
of the knowledge representation is chosen properly (i.e. small enough
to be comprehensible but large enough to be meaningful to the domain
specialist), then the rule-based approach allows great flexibility for
adding, removing, or changing knowledge in the system.

Line-of-reasoning: h central organizing principle in the design of
knowledge-based intelligent agents is the maintenance of a line-of-
reasoning that is comprehensible to the domain specialist. This
principle is, of course, not a logical necessity, but seems to us to
be an engineering principle of major importance.

Multiple Sources of Knowledge: The formation and maintenance (support)
of the line-of-reasoning usually require the integration of many
disparate sources of knowledge. The representational and inferential
problems in achieving a smooth and effective integration are
formidable engineering problems.

Explanation: The ability to explain the line-of-reasoning in a language
convenient to the user is necessary for application and for system
development (e.g. for debugging and for extending the knowledge
base). Once again, this is an engineering principle, but very
important. What constitutes "an explanation" is not a simple concept,
and considerable thought needs to be given, in each case, to the
structuring of explanations.

The case studies described in the remainder of the paper
include OENDRAL, Meta-DENDAL, MYCIN and TEIRESIAS, SU/X, AM, MOLGEN
and CRYSALIS.

-01

* .A

DAHCI5-73-C-0435 Final Report 44

4 Bibliography
HPP-74-3
B.G. Buchanan,
"Scientific Theory Formation by Computer," Nato Advanced Study
Institutes Series, Series E: Applied Science, 14:515,
Noordhoff-Leyden, (1976).

HPP-74-4
E.A. Feigenbaum,

"Computer Applications: Introductory Remarks," in Proceedings of
Federation of American Societies for Experimental Biology, 33:2331,
(1974).

HPP-75-1
E.H. Shortliffe, B.G. Buchanan,
"A Model of Inexact Reasoning in Medicine," Mathematical
Biosciences, 23:351, (1975).

HPP-75-2
E.H. Shortliffe, R. Davis, S.G. Axline, B.G. Buchanan, C.C. Green,
S.N. Cohen,
"Computer-Based Consultations in Clinical Therapeutics;
Explanation and Rule Acquisition Capabilities of the MYCIN System,"
Computers and Biomedical Research, 8:303, (August 1975).

HPP-75-4
E.H. Shortliffe,
"Judgmental Knowledge as a Basis for Computer-Assisted Clinical
Decision Making," Proceedings of the 1975 International Conference
on Cybernetics and Society, (September 1975).

HPP-75-6
kIM-266, CS-517, AD-N019641

Randall Davis, Bruce Buchanan, Edward Shortliffe,
"Production Rules as a Representation of a Knowledge-Based Consultation
Program," (October 1975). Also found in Artificial Intelligence,
8:1(February 1977).

HPP-75-7
IM-271, CS-524,, ADA019702/tJ'C

Randall Davis, Jonathan King,
"An Overview of Production Systems," Machine Representations of
Knowledge, Dordrecht, D. Reidel Publ. Co., 1976. Proceedings of
NATO ASI Conference, (October 1975).

HPP-75-13
B.G. Buchanan,
"Applications of Artificial Intelligence to Scientific Reasoning," In
Proceedings of Second USA-Japan Computer Conference, American
Federation of Information Processing Societies Press, (August 1975).

7

DAHCI5-73-C-0435 Final Report 45

HPP-75-14
R.E. Carhart, S.M. Johnson, D.H. Smith, B.G. Buchanan, R.G Dromey,
J. Lederberg,
"Networking and a Collaborative Research Community: A Case Study Using
the DENDRL Program," in "Computer Networking and Chemistry", P. Lykos,
Ed., American Chemistry Society, Washington, D.C., (1975).

HPP-75-16
E.H. Shortliffe, R. Davis,
"Some Considerations for the Imlementation of Knowledge-Based Expert
Systems," SIGART Newsletter, 55:9, (December 1975).

HPP-76-4 a
B.G. Buchanan, D.H. Smith, W.C. ,-hite, R.J. Gritter, E.A. Feigenban,
J. Lederberg, and Carl Djerassi,
"Application of Artificial Intelligence for Chemical Inference XII.
Automatic Rule Formation in Mass Spectrometry by Means of the
Meta-DENDRAL Program," Journal of the American Chemical Society,
98:6168, (1976).

HPP-76-5
T.H. Varkony, R.E. Carhart and D.H. Smith,
"Applications of Artificial Intelligence for Chemical Inference XXIII.
Computer-Assisted Structure Elucidation. Modelling Chemical Reaction
Sequences Used in YVolecular Structure Problems," in
"Computer-Assisted Organic Synthesis," W.T. Wipke, Ed.,
American Chemical Society, Washington, D.C., (in press).

HPP-76-7
AIM-283, CS-552
Randall Davis,
"Applications of Meta Level Knowledge to the Construction, Maintenance
and Use of Large Knowledge Bases,"
Ph.D. Thesis in Computer Science, (July 1976).

HPP-76-8
%A.1-286, CS-570
Douglas Lenat,
"AM: An Artificial Intelligence Approach to Discovery in Mathematics
as Heuristic Search,"
Ph.D. Thesis in Computer Science, (July 1976).

HPP-77-1

STN-CS-77-593
A.C. Scott, W. Clancey, R. Davis, E.H. Shortliffe,
"Explanation Caoabilities of Knowledge-Based Production Systems,"
American Journal of Computational Linguistics, Microfiche 62,
Knowledge-Based Consultation Systems, (1977).

DAHC5-73-C-0435 Final Report 46

HPP-77-2
STAN-CS-77-589
Robert S. Engelmore and H. Penny Nii
"A Knowledge-Based System for the Interpretation of Protein X-Ray
Crystallographic Data," (January 1977).

HPP-77-4
T.M. Mitchell and G.M. Schwenzer,
"Applications of Artificial Intelligence for Chemical Inference
XXV. A Computer Program For Automated Empirical 13C NIR Rule
Formation," (Submitted to Organic Magnetic Resonance, January 1977).

HPP-77-5
STAN-CS-77-596
Mark Stefik and Nancy Martin,
"A Review of Knowledge-Based Systems as a Basis for a Genetics
Experiment Designing System," (February 1977).

HPP-77-6
STAN-CS-77-597
Bruce G. Buchanan and Tom Mitchell.
"Model-Directed Learning of Production Rules," in
Proceedings for the Workshop on Pattern-Directed Inference Systems
(February, 1977).

HPP-77-7
STAN-CS-77-612
H. Penny Nii and Edward A. Feigenbaum,
"Rule-based Understanding of Signals," to be presented at Workshop on
Pattern-directed Inference Systems, (May 1977).

HPP-77-8
R. Davis,
"Knowledge Acquisition on Rule-based Systems: Knowledge about
Representations as a Basis for System Construction and Maintenance,"
(Submitted to Pattern-Directed Inference Conference, May 1977).

HPP-77-9
R. Davis,
"Interactive Transfer of Expertise I: Acquisition of New Inference
Rules," (Submitted to Fifth IJCAI, August 1977).

Il HPP-77-12
Reid G. Smith,
"The Contract Net: A Formalism For the Control of
Distributed Problem Solving,"
(Submitted to Fifth IJCAI, August 1977).

* .

DAHCI5-73-C-0435 Final Report 47

HPP-77-13
Tom M. Mitchell,
"Version Spaces: An Approach to Rule Revision During
Rule Induction," (Proceedings of the Fifth IJCAI, August 1977).

HPP-77-14
Reid G. Smith, Tom M. Mitchell, Richard A. Cnestek,
and Bruce G. Buchanan,
"A Model For Learning Systems," (Submitted to Fifth IJCAI,
August 1977).

HPP-77-15
E.A. Feigenbaum, R.S. Engelmore, C.K. Johnson,
"A Correlation Between Crystallographic Computing and
Artificial Intelligence," in Acta Crystallographica,
A33:13, (1977).

HPP-77-16
Randall Davis and Bruce G. Buchanan,
"Meta-Level Knowledge: Overview and Applications,"(Submitted to Fifth IJCAI, August 1977).

HPP-77-19
N. Martin, P. Friedland, J. King, and M.J. Stefik,
"Knowledge Base Management for Experiment Planning,"
(submitted to 5th IJCAI).

HPP-77-25
Edward A. Feigenbaum,
"The Art of Artificial Intelligence," to appear in
the proceedings of 5th IJCAI, 1977.

HPP-77-27
Hector Garcia-olina,
Overview and Bibliography of Distributed Data Bases, 1977.

HPP-77-28
S7AN-CS-618

Nils J. Nilsson,
A Production System for Automatic Deduction,
Machine Intelligence 9, 1977.

HPP-77-33
Randall Davis,
Generalized Procedure Calling and Content-Directed Invocation,
Proceedings of Artificial Intelligence and Programing Languages Conf.,
Published as SIGA/r/SIGPLMN Combined Issue, August 1977, pp 45-54.

* t

_ .- . . - - , ,. - -

I

DAHC5-73-C-0435 Final Report 48

5 Aocendix -- The AI Handbook

5.1 Introduction

The AI Handbook is a compendium of short articles (3-5 pages)
about the projects, ideas, problems and techniques that make up the
field of Artificial Intelligence. Over 150 articles have been drafted
by researchers and students in the field, on topics ranging in depth
from "ATN's" to "An Overview of Natural Language Research", and
covering the entire breadth of AI research: search, robotics, speech
understanding, real-world applications, etc.

Current work involves editing and rewriting of articles in all
fields, as well as continuing research and article preparation in the
fields of Theorem Proving, Vision, Robotics, Human Information
Processing, Learning and Inductive Inference, Problem Solving, and
Planning.

5.2 Table of Contents

This is a tentative outline of the Handbook. Articles in the
first eight Chapters are expected to appear in the first volume. A list
of the articles in each Chapter is appended.

I. Introduction
II. Heuristic Search

III. Al Languages
TV. Representation of Knowledge

V. Natural Language Understanding
VI. Speech Understanding

VII. Applications-oriented AI Research
VIII. Automatic Programming

IX. Theorem Proving
X. Vision

XI. Robotics

XII. Human Information Processing -- Psychology
XIII. Learning and Inductive Inference
XIV. Problem Solving and Planning

I. INTRODUCTION
A. Philosophy
B. Relationship to Society
C. History
D. Conferences and Publications

DAHC15-73-C-0435 Final Reoort 49

II. Heuristic Search
A. Overview
B. Problem representation

1. Overview
2. State space representation
3. Problem reduction representation
4. Game trees

C. Search
1. Blind state space search
2. Blind search of an and/or tree
3. Heuristic search in problem-solving

a. Pasic concepts
b. A* (optimal state-sroace search)
c. Variations on A*: band width, bidirectional search O

d. Heuristic search of an and/or grach
e. Hill Climbing

4. Game tree search

a. Minimax
b. Alpha-beta

D. Examtples

1. Logic Theorist
2. GPS
3. Gelernter - geometry
4. Slagle & Moses - Integration
5. STRIPS 0
6. ABSTRIPS
7. NOAH

III. AI Languages
A. Early list-processing languages
B. Language/system features

0. Overview of current LP languages
1. Control structures
2. Data Structures (lists, associations,
3. Pattern Matching in A languages

• 4. Deductive mechanisms
.

C. Current languages/systems
1. LISP, the basic idea
2. INTERLISP

3. QLISP (mention ':4)
4. SAIL/LEAP
5. PIA.%NER
6. CONNIVER
7. SLIP
8. POP-2
9. SNOSOL

10. QA3/PROLOGtJE11. ACTORS, SMALLTALK, OI,4UL
"@

IV. Representation of Knowledge

11 - -M-L-T-L-,- - -I--

DAHCI5-73-C-0435 Final Report 50

X. Overviews
1. Survey of representation techniques
2. Issues and problems in representation theory

B. Reoresentation Schenes
1. Predicate calculus
2. Semantic nets (Quillian, LNR, Hendrix)
3. Production systems .
4. Higher Level Knowledge Structures

a. Frames, Scripts, The basic idea (Bartlett, 14insky, Abelson)
b. KRL-0, "AERLIN
c. Others: FRL, O4L, Toronto

5. Componential analysis (Schank, Wilks, Jackendoff) j
6. Procedural representations (SHRDLU, actors, demons)
7. Direct (Analogical) representations
8. Multiple Knowledge sources - Blackboard (see VIA)

C. Comparison of Representation Schemes

V. Natural Language
A. Overview - History & Issues
B. Representation of Meaning
C. Grammars and Parsing

1. Review of formal grammars
2. Extended grammars

a. Transformational grammars
b. Systemic graicmars,
c. Case Grammars

3. Parsing techniques
a. Overview of parsing techniques
b. Augmented transition nets, Woods
c. CHARTS - GSP

D. Text Generating systems
E. Machine Translation

1. Overview & history
2. Wilks' machine translation work

F. Famous Natural Language systems
1. Early NL systems (SAD-SAM through ELIZA) -'I
2. PARRY
3. MARGIE
4. LUNAR
5. SHRDLU, Winograd

4i VI. SPEECH UNDERSTNDING SYSTIMIS
A. Overview (include a mention of acoustic proc.)
B. Design Considerations for Speech Systems
C. Integration of Multiple Sources of Knowledge (see Overview)
D. The Early ARPA speech systems

1. DRAGON
2. HEARSAY I

DAHCI5-73-C-0435 Final Report 51

3. SPEECHLIS
E. Recent Speech Systems

1. HARPY
2. HEARSAY II
3. W.qIM
4. SRI-SDC System

VII. Applications-oriented AI research
A. Overview of AAIR
3. CHE4IS TRY

1. Mass Spectrometry (DENDRAL
2. Organic Synthesis

C. MEDICINE
1. Overview
2. MYCIN
3. CASNET
4. DIALOG
5. Frame Theory in Medicine

D. MATHS4ATICS
1. REDUCE
2. MACSYMA

E. EDUCATION
1. Overview
2. SCHOLAR

3. SOPHIE
F. PSYCHOLOGY

1. Protocol Analysis
G. MISC..

1. SRI COMP. Based Cons.
2. RAND-RITA
3. Management applications
4. Music
5. RPNDEVOUS

VIII. Automatic Progr&nming
A. Automatic Programing Overview
B. Program Specification
C. High-level Program Model Construction
C. Program Synthesis

1. Overview
2. Techniques (Traces, Examples. Natural Language, TP)

a. Traces

b. Examoles
c. Natural Language
d. Theorem Proving

D. Program optimization techniques
E. Programmer's aids
F. Program verification (see Article IXD5)
G. Integrated AP Systems

DAHC15-73-C-0435 Final Report 52

IX. THEORM PROVING
A. Overview
B. Predicate Calculus
C. Resolution Theorem Proving

1. Basic resolution method
2. Syntactic ordering strategies
3. Semantic & syntactic refinement

D. Non-resolution theorem proving
0. Overview
1. Natural deduction
2. 3oyer-Moore
3. LCF

E. Uses of theorem proving
1. Use in question answering
(2. Use in problem solving]
3. Theorem Proving languages
4. Man-machine theorem proving
5. In Automatic Programming

F. Proof checkers

X. VISION
A. Overview
B. Polyhedral or Blocks World Vision

1. Overview
2. Guzman
3. Falk
4. Waltz

C. Scene Analysis
1. Overview
2. Template Matching
3. Edge Detection
4. Homogeneous Coordinates
5. Line Description
6. Noise Removal
7. Shape Description
8. Region Growing (Yakamovsky, Olander)
9. Contour Following
10. Spatial Filtering
11. Front End Particulars
12. Syntactic Methods
13. Descriptive Methods

D. Robot and Industrial Vision Systems
1. Overview and State of the Art
2. Hardware

E. Pattern Recognition
1. Overview
2. Statistical Methods and Applications
3. Descriptive Methods and Anplications

F. Miscellaneous
1. Multisensory Lmages

D Hr15-73-C-0435 Final Report 53

2. Perceptrons
rOe

XI. R030TICS
A. Overview
B. Robot Planning and Problem Solving
C. Arms
D. Present Day Industrial Robots
E. Robotics Programming Languages

XII. Human Information Processing - Psychology
A. Perception
B. Memory and Learning

I. Basic structures and processes in IPP
2. Memory Models

Q a. semantic net memory models

b. HAM (Anderson & Sower)
c. EPAM
d. Productions (HPS)
e. Conceptual Dependency

C. Psycholinguistics
D. Human Problem Solving

0. Overview
1. PBG's
2. Human chess problem solving

E. Behavioral Modeling
1. Belief Systems
2. Conversational Postulates (Grice, 74)
3. PARRY

XIII. Learning and Inductive Inference
A. Overview
B. Samuel Checker program
C. Winston - concept formation
D. Pattern extrapolation problems-Simon,
E. Overview of Induction
F. AQVAL (Michalski at U.Ill)G. Parameter adjustment of linear functions
H. Rote learning
I. D.A. Waterman's machine learning of heuristics
J. Learning by debugging
K. Learning by parameter Adaptation
L. Signature & move phase tables

6

XIV. Problem Solving & Planning
A. Overview
B. Problem Representation (See Section IM)
C. Search (See Chapter II)
D. Theorem proving in problem solving

Lo"

DAHCI5-73-C-0435 Final Report 54

E. Planning
F. Constraint relaxation (Waltz, REF-RF)
G. Reasoning by analogy (Evans, Zorba, Winston)
H. Problem Solving Programs

1. STRIPS (See ID6)5)
2. ABSTRIPS (See IID6)
3. NOAH (See 1ID7)
4. ZORBA
5. QA3
6. Evans analogy progra

b..l

4

bi -'iFa

0

DAHCI5-73-C-0435 Final Report 55

5.3 Sample Articles

5.3.1 HEURISTIC SEARCH OVERVIEW (Sect. II.A)

BASIC CONCEPTS IN HEURISTIC SEARCH

In the blind search of a state space (section IICI) or and/or
graph (section IIC2), the number of nodes expanded before reaching a
solution is likely to be prohibitively large. Usually, one runs out of
space or time (or both) in any but the simplest problems. This is
because the order of expanding the nodes is purely arbitrary, and does
not use any properties of the problen being solved. Information about
the particular problem domain can often be brought to bear to help
reduce the search. Information of this sort is called heuristic
information, and a search method using it is a heuristic search method.

THE IMPORThMNCE OF HEURISTIC SEARCH TIHEORY

Heuristic search methods were employed by nearly all early
problem-solving programs. Most of these programs, though, were written
to solve problems from only a single domain, and the domain-specific
information they used was closely intertwined with the techniques for
using it. This meant that the heuristic techniques themselves were not
easily accessible for study and adaptation to new problems, and there

41 was some likelihood that substantially si-milar techniques would have to
be reinvented repeatedly. Consequently, an interest arose in
developing generalized heuristic search algorithms, whose properties
could be studied independently of the particular programs that might
use them. (See Newell and Ernst, 1959; Feigenbaum 1969; Sandewall
1971.) This task, in turn, required the use of generalized problem

* formulations. The latter have been discussed in section ???, Problem
Representation, in an approach generally following Nilsson (1971).
Given a generalized problem representation, the most basic heuristic
search techniques can be studied as variations on blind search for the
same type of problem representation.

The importance of studying heuristic search algorithms in the
abstract has been diversely judged in recent years. One of the best
known students of the subject, has remarked, "The problem of
efficiently searching a graph has essentially been solved and thus no
longer occupies AI researchers" (Nilsson, 1974). Nevertheless, recent
work makes it clear that heuristic search theory is far fra complete

b (e.g., Gaschnig, 1977; Simon and Kadane, 1975); its kinship with
complexity theory now tends to be emphasized (see Pohl, 1977).

WAYS OF USING HEURISTIC INFOPMIATION

The points at which heuristic information can be applied in a
search include

DAHCI-73-C-0435 Final Report 55

(1) deciding which node to expand next, instead of doing the
expansions in a strictly breadth-first or depth-first
order, and

(2) in the course of expanding a node, deciding which
successor or successors to generate, instead of blindly
generating all possible successors at one time.

Decisions of the second type may often be identified with deciding
which operator to apply next to a given node. . node to which some but
not all applicable operators have been applied is said to have been
partially developed or partially expanded. The use of heuristic
information to develop nodes partially, reserving the possibility of
fuller expansion at a later point in the search, has been investigated
in Michie, 1967, and Michie and Ross, 1970. Other applications of the
idea of limiting the successors of a given node occur in game-playing
programs (see section ???, Game Tree Search). An important variant of
the idea is means-ends analysis, which, instead of deciding on an
applicable operator, chooses an operator most likely to advance the
search whether or not it is immediately applicable. The problem of
making the operator applicable, if necessary, is addressed secondarily.
(See section ???, GPS, and section ???, STRIPS.)

Most theoretical study has concerned decisions of the first
type, deciding which node to expand next, with the assumption that
nodes are to be expanded fully or not at all. The general idea is
always to choose for expansion the node that seems "most promising."
The promise of a node can be defined in various ways. One way, in a
state-space problem, is to estimate its distance from a goal node;
another is to assume the solution oath includes the node being
evaluated and to estimate the length or difficulty of the entire path.
Along a different dimension, the evaluation may take into account only
certain predetermined features of the node in question, or it may
determine the relevant features by comparing the given node with the
goal. In all these cases, the measure by which the promise of a node
is estimated is called an evaluation function. [Third sentence of
paragraph is based on discussion in Human Problem Solving.] [Sandewall
mentions a third possible way to evaluate promise of a node: try to
estimate total remaining search effort at the node. Probably omit
this.]

ORDERED STATE-SPACE SEARCH

An example of a heuristic search algorithm using an evaluation
function is the ordered search of a state space. The evaluation
function is f*; it is defined so that the more promising a node is, the
smaller is the value of f*. The node selected for expansion is one at
which f* is minimum.

*A

-j

DAHC15-73-C-0435 Final Report 57

The following algorithm describes an ordered search for a
gencral state-space graph.

1. Put the start node s in a list, called OPEN, of
unexpanded nodes. Calculate f*(s), and associate its

41 value with node s.

2. If OPEN is empty, no solution exists.

3. Select from OPEN a node i at which f* is minimum. If
several nodes qualify, choose among them arbitrarily
(unless one or more is a goal node, in which case choose
one of the goal nodes).

4. Remove node i from OPEN, and place it on a list, called

CLOSED, of expanded nodes.

5. If i is a goal node, a solution has been found.

6. Expand node i, creating nodes for all its successors.
For every successor node j of i:

a. If j is neither in list OPEN nor in CLOSED, then
• add it to OPEN. Calculate f*(j) and associate its value

with node j. Create a back pointer from j to its
predecessor i (in order to trace back a solution path
once a goal node is found).

b. If j was already on either OPEN or CLOSED,
calculate f*(j) and associate with j the smaller of the
values f*(j) and the previous value associated with it.

If the value associated with j has been lowered,
change the back pointer so that it points to i. If j was
in CLOSED and had its value lowered, move it back to
OPEN.

(This step is necessary for general graphs, in which
a node can have more than one predecessor. The
predecessor yielding the smaller value of f* (j) is
chosen. For trees, in which a node has at most one
predecessor, this step can be ignored. Note that even
if the search space is a general graph, the subgraoh
that is made explicit is always a tree since node j
never records more than one predecessor at a time.)

7. Go to 2.

~kI

DUHCI5-73-C-0435 Final Report 53

Breadth-first, uniform-cost, and death-first search (section
???, Blind State-Space Search) are all special cases of the ordered
search technique. For breadth-first search, we choose f*(i) to be the
depth of node i. For uniform-cost search, f*(i) is the cost of the
path from the start node to node i. A depth-first search (without a
depth bound) can be obtained by taking f*(j) to be the negative of the
depth of the node.

The purpose of ordered search, of course, is to reduce the
number of nodes expanded in comparison to blind search algorithms. Its
effectiveness in doing so depends directly on the choice of f* as a
means of discriminating sharply between promising and unpromising
nodes. If the discrimination is inaccurate, however, the ordered search
may miss an optimal solution or all solutions. If no exact measure of
promise is available, the choice of f* thus involves a tradeoff between
time and space on the one hand and the guarantee of an optimal
solution, or any solution, on the other.

PROBLE4 TYPES AND THE CHOICE OF F*

What it means for a node to be promising-and consequently, the
appropriateness of a particular evaluation function-depends on the
problem at hand. Several cases can be distinguished according to the
type of solution required. In one, it is assumed that the state space
contains multiple solution paths with different costs; the problem is
to find an optimal (i.e., minimum cost) solution. This first case is
well understood; see section ???, A*.

The second situation is similar to the first, but with an added
condition: the problem is hard enough that, if it is treated as an
instance of case one, the search will probably exceed time and space
bounds without finding a solution. The questions for case two tnus
involve ways of finding good (but not optimal) solutions with
reasonable amounts of search effort; and of bounding both the search
effort and the extent to which the solution produced is less than
optimal. For discussion of case two, see section ???, Relaxing the
Optimality Requirement.

A third kind of problem is one in which there is no concern for
the optimality of the solution; perhaps only one solution exists, or
any solution is as good as any other. The question here is how to
minimize the search effort, instead of, as in case two, trying to
minimize some combination of search effort and solution cost. k
probabilistic analysis has recently been given by Simon and Kadane
(1975).

An example of case three comes from theorem-proving, where one
may well be satisfied with the most easily found proof, however
inelegant. A clear example of case two is the traveling-salesman

-D

DAHC5-73-C-0435 Final cort 59

problem (see section ???), in which finding some circuit through a set
of cities is trivial and the difficulty, which is very great, is
entirely in finding a shortest or close-to-shortest path. Most
treatments, however, do not clearly distinguish between the two cases.
A popular test problem, the 8-puzzle (see section ???), can be
interpreted as being in either class.
RELATED ARTICLES:

State space representation
Search applied to state spaces
Evaluation functions

REFERENCES:

Allen Newell and George Ernst, "The Search for Generality," in Wayne
A. Kalenich, ed., Information Processing 1965: Proceedings of
IFIP Congress 65, Spartan Books, Washington, 1965, 9p. 17-24.

Edward A. Feigenban, "Artificial Intelligence: Themes in the Second
Decade," in A.J.H. Morrell, ed., Information Processing 68:
Proceedings of IFIP Congress 1968, Volume 2, North-Holland,
Amsterdam, 1969, pp. 1008-1024.

E. J. Sandewall, "Heuristic Search: Concepts and Methods," in N. V.
Findler and Bernard Meltzer, eds., Artificial Intelligence
and Heuristic Programming, American Elsevier, New York, 1971,
pp. 81-100.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael, "A Formal Basis
for tle Heuristic Determination of Minimum Cost Paths," IEEE
Transactions on Systems Science and Cybernetics, vol. SSC-4,
1968, pp. 100-107.

Nils J. Nilsson, Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill, New York, 1971.

D. Michie, "Strategy Building with the Graph Traverser," in N. L.
Collins and Donald Michie, eds., Machine Intelligence 1,
American Elsevier, New York, 1967, pp. 135-152.

Donald Michie and Robert Ross, "Experiments with the Adaptive Graph
Traverser," Bernard Meltzer and Donald Michie, eds., Machine
Intelligence 5, American Elsevier, New York, 1970, pp.
301-318.

P%

ft

DMHCI5-73-C-0435 Final Report 60

5.3.2 NATURAL LANGUAGME PROCESSING OVERVIEW (Sect. V.A)

Prehistory

Computational linguistics, the precursor of current work in
machine understanding of natural languages, first appeared in the
1940s, soon after computers became available commercially. The
machine's ability to manipulate symbols was first used to comoile lists
of word occurrences (word lists) and concordances (their contexts in
written texts). Such surface-level machine processing of text was of
some value in linguistic research, but it soon became aooarent that the
computer could perform much more powerful linguistic functions than

merely counting and rearranging data.

In 1949, Warren Wleaver proposed that computers might be useful
for "the solution of the world-wide translation problem" (Weaver, 1949,
o. 15). The resulting research effort, called mechanical translation
(see Article IE), attempted to simulate with a computer the presumed
functions of a human translator: looking up each word in a bilingual
dictionary; choosing an equivalent word in the outout language; and,
after processing each sentence, arranging the resulting string of words
to fit the output language's word order. Despite the attractive
simplicity of the idea, many unforseen problems arose, both in
selecting appropriate word equivalences and in arranging them to
produce a sentence in the output language.

Goals

In the 1960s a new breed of computer programs was develooed
that attempted to deal with some of the more complex issues of language
that had led to the difficulties in the mechanical translation efforts
(see Article IF). The central assumption behind these programs, which
were the beginnings of natural-language-processing research, was that
human communication is not a simple process of word manipulation.
Rather, linguistic and psychological research indicates that human
language is a complex cognitive ability involving many different kinds
of knowledge: the structure of sentences; the meaning of words; a model
of the listener; the rules of conversation; and an extensive, shared
body of general information about the world. The focus of modern work
in natural language processing is "understanding" language, defined in
terms of performing tasks like paraphrasing, question answering, or
information retrieval. The general approach has been to model human
language as a knowledge-based communication processing system and then
to create a working model of this processor in a digital computer.

In the field, researchers experiment with co, puter models of
language processing not only to create useful "understanding" systems
but to gain a better understanding of language, in general, and of the
nature of computer intelligence, in particular. Like the human mind,

DAHC15-73-C-0435 Final Report G1

the computer has the ability to manipulate symbols in complex _4
processes, including processes that involve decision making based on 0
stored knowledge. (It is an assumption of the field that the human use
of language is a cognitive process of this sort.) By develooing and
testing computer-based models of language processing that approximate
human performance, researchers hope to see more clearly how human
language works. At the same time, it is hoped that such progr&s will
be able to perform practical, language understanding tasks.

History

Natural language programs have had diverse methods and goals,
making their categorization somewhat difficult. One coherent schema,
borrowed from Winograd, 1972, groups natural-language programs
according to how they represent and use knowledge of their subject
matter. On this basis, natural language programs can be divided into
four historical categories.

Early natural language programs worked with special formats to
achieve limited results in specified domains. These programs used ad
hoc data structures to represent "knowledge." Programs such as
SASEBALL, SAD-SAM, 3 UDNT, and ELIZA (see Article IF) searched their
input sentences, which were restricted to simple declarative and
interrogative forms, for key words or patterns representing known
relationships and applied to them domain-specific heuristics and
knowledge. Though they performed relatively small tasks and avoided or
ignored complexities in language, their results and methods were the
impetus to dealing with these more difficult problems.

The second category can be called text-based systes. These
programs, such as PROTOSYNTHEX I (Skmon et al., 1966) and the Teachable
Language Comprehender (TLC) (Quillian, 1968), attempted to expand
beyond the limits of a specific domain. These programs dealt with full
English text as a base, rather than with key words or phrases. Input
text was interpreted as a request to access a structured information
store, and a variety of clever methods was used to identify the proper
response. Though more general than their predecessors, these programs
still failed to deal with the underlying meaning of the English
language input. They were able to give only responses that had been
pre-stored as data; they had no deductive power.

To try to deal with the problem of how to characterize and use
the meaning of sentences, a group of programs was developed called
limited logic systems. In these systems (e.g., SIR [Raphael,1968],
DECON [Thompson,1968], and CONVERSE [Kellogg,19681), the information in
the database is stored in a formal, albeit ad hoc, notation, and
mechanisms are provided for translating input sentences into the same
form. This formal notation tries to free the informational content of

V the input from the structure of English. The overall goal of these

*A

DAHC5-73-C-0435 Final Report 62

systems was to accept complex input information (e.g., information
containing quantifiers and relationships), use it to perform inferences
on the database, and thus realize answers to complex questions. Their
problem lay in the fact that the complexity of the stored information
was not really part of the database but was built into the system's
routines for manipulating the database. PROTOSYNTHEX II, for example,
contained statements of the form "A is X" and "X is B" and tried to
answer "Is A 3?", based on transitivity. The deductive mechanism
required for these inferences was embedded in soecial-purpose
subroutines, rather than in the database as a "theorem," and thus was
not available to be used to perform more involved inferences, which
require a longer chain of reasoning.

More recently, natural language programs have leaned toward
developing general deductive systems like those of Woods (1968) and
Hewitt (1969, 1971) that attempt to express knowledge in an integrated
format (see Article IF3; Article IF4; Article IF5; Article IE2; and
Section , on specific systems). These systems perform much better than
earlier ones, through the use of linguistic models of sentence
structure and general reasoning techniques that operate on the meaning
extracted from sentences, which is stored in some formal
representation.

Concepts and Representation

Ultimately, natural language programs seek to match the
performance of a human, language user. They attempt to simulate user
functions through a variety of schemes for representation of knowledge
and manipulation (see Section). These programs have, of course, been
developed with very little understanding of the internal codes andprocesses of the human system being modeled.

In order to deal with the infinite complexities of a language
in a systenatic way, natural language programs constrain their input
within the framework of a grammar defined by a set of patterns that
describes the set of possible utterances (see Article ICl). In
addition to knowledge about the possible structures of sentences, the
natural- language-processing paradigm requires that other types of
knowledge (such as a dictionary, domain knowledge, and world knowledge)
be included in the programs if they are to model human thought. The
most successful and promising work in natural language has ailned at
developing increasingly comprehensive representations of knowledge.

The State of the Art

The present state of the art in implemented, running, natural
language understanding programs is represented by: Kaplan's GSP,
Wilks's (1974) work on English to French translation, Schank's ?ARGIE,
Winograd's SHRDLU, and Wood's LUNAR (see Articles IC3c, IE2, IF3, IF5,

4 -4,

DAHC5-73-C-0435 Final Report 63

IF4, respectively). These systems all use extensive parsing mechaniss
and internal representations of the meaning extracted from sentences.
They tackle a much wider range of language features than the early
natural language systems, but they still deal with knowledge on a
stiple level. Though they take a wider view than the early systems, of
what is needed to extract the meaning of a sentence, these new systems
still have limited scope in terms of the language features t-hey can

* "understand."

The main issues in natural language processing today are in the
design of control mechanisms to flexibly integrate diverse sources of
knowledge and in the development of new systems for representing and
manipulating knowledge. In existent natural language systems,

0 developed in the late 1960s, the result of processing a sentence is the
addition of a unit of knowledge to a growing database. (SMROLU
manipulates a toy world but treats these actions as side-effects.)
Current research stresses understanding a sentence in the context of a
larger body of knowledge and building and manipulating integrated
knowledge-structures. Mechanisms such as conceptualizations (Chafe,
1972), SCRIPTS (Abelson, 1973), DEMONS (Charniak, 1973), RINGS
(MkDermott, 1973), partitioned semantic nets (Hendrix, 1975), and KRL
(Bobrow & Winograd, 1976) are attempts to develop mechanisms for
integrating the meaning of sentences into larger knowledge-structures.

Re ferences

See Abelson, 1973; Bobrow & Winograd, 1977; Chafe, 1972;
Charniak, 1973; Hendrix, 1976; Hewitt, 1969; Hewitt, 1971; Kaplan,
1973; Kellogg, 1968; McDermott, 1973; 2uillian, 1968; Raphael, 196S;
SLon, 1966; Thomson, 1968; Weaver, 1949; Wilks, 1974; Wilks, 1976;
Winograd, 1972; Winograd, 1974; Winograd, 1977; Woods, 1968.

* 01

S

DAC15-73-C-0435 Final Report 64

5.3.3 HARPY (Sect. VI.E.1)

Harpy Speech Recognition System

Introduction

The Harpy speech recognition program was designed at Carnegie-
Mellon University by Bruce Lowerre (Lowerre, 1976) based on
observations of the Hearsay I and Dragon speech systems. The
representation of the search space as a network was an adaptation from
the Dragon system. The Harpy network includes every syntactic and
phonemic variation for all legal utterances specified by the grammar.
The dynamic programming technique of the Dragon system, which utilized
a complete search of the network, was modified to search only the "best
few" nodes at each point in an utterance. Segmentation of the
acoustical signal according to transitions in the character of the
waveform rather than at fixed tine intervals was a carry-over from the
Hearsay I system. The combination and refinement of ideas from these
two previous systems has produced the best performance results to date
for a speech recognition system.

Special Features

Beam search of a "precompiled" network

All phonetic spellings for each syntactic path i- the gramnar
are coxmbined with word junction phenomena (the adjustments made in the
pronunciations of words due to those preceding and following them in
continuous speech) to create one large network. Unlike the Dragon
system, which searches every path in the network, the Harpy system uses
a threshold to limit the active states to only those states whose
probability is within epsilon of the highest state probability for that
tLe segment. Thus, if the probabilities are w:.l separated, then only
a few states will be considered, and, conversely, if the probabilities
are bunched together (i.e., the correct selection is ambiguous), then
many states will be chosen.

Processes segmented speech

The decision to use a flexible division of the acoustic signal
according to acoustic events, rather than according to a fixed time
interval, allows for a single acoustic template per phone. This avoids
the problem of special templates for the recognition of partially _
completed acoustic phenomena. However, since the network is composed
of a sequential phonetic representation, the system is very sensitive
to missing or poorly labeled segments.

Uses heuristics to limit search time and size of network

D0HC15-73-C-0433 Final Reot t 65

The search time is limited by using previously cotmout_ d partial
search results. The network is condensed by removing redundant states,
or by recognizing common groupings of states. The namber of states is
slightly increased, but the number of connections (i.e., pointers) can
be markedly decreased, by introducing special states at comion
intersections in the network.

Probabilities computed during utterance

In contrast to the Dragon system, which used preselected
transition probabilities for the network, the Harpy system adapts
probabilities dynamically in relation to the length of the acoustic
segment being processed.

Representation of Knowledge

Harpy uses only acoustic, Phonetic, and syntactic knowledge
sources. These sources are initially represented as a BNF grammar
specification, a dictionary, and as inter-word juncture rules, which
are then compiled into the finite-state transition network structure.
Speaker-dependent acoustic-phonetic templates and a table of data-
dependent transition probabilities are other data structures.

Limitations

The extension to much larger vocabularies must be examined in
future research efforts, since the explicit creation of the network of
possibilities can have a large memory requirement. The design of the
current system cannot easily accommodate the inherent semantics and
pragmatics of the utterance, which may be needed to constrain search in
an expanded speech domain.

Sumary

A case study of two dissimilar speech systems led to a first in
system design: a system that approached the 1971 goals of the speech
comnunity (Licklider, et al, 1973). This was done by combining dynaic
programming techniques with useful heuristics, such as beam search. The
maximum capabilities of this approach and including these techniques in
a larger heuristic-based system, Hearsay II, is under study at C.J. The
results of the Harpy system on several test data sets are shown below.
A comparison of Harpy to the 1971 goals appears in the Speech Overview
article.

Harpy results: [table to be supplied]

